high energy qcd and wilson lines
play

High-energy QCD and Wilson lines I. Balitsky JLAB & ODU LANL - PowerPoint PPT Presentation

High-energy QCD and Wilson lines I. Balitsky JLAB & ODU LANL Nuclear Theory Seminar 13 March 2014 LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63 Outline 1 Introduction: BFKL


  1. High-energy QCD and Wilson lines I. Balitsky JLAB & ODU LANL Nuclear Theory Seminar 13 March 2014 LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  2. Outline 1 Introduction: BFKL pomeron in hign-energy pQCD Regge limit in QCD. Perturbative QCD at high energies. BFKL and collider physics 2 High-energy scattering and Wilson lines High-energy scattering and Wilson lines. Evolution equation for color dipoles. Light-ray vs Wilson-line operator expansion. Leading order: BK equation. 3 NLO high-energy amplitudes Conformal composite dipoles and NLO BK kernel in N = 4 . NLO amplitude in N = 4 SYM Photon impact factor. NLO BK kernel in QCD. rcBK. NLO hierarchy of Wilson-lines evolution. Conclusions LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  3. Light-ray operators Heisenberg uncertainty principle: ∆ x = � p = � c E LHC: E=7 → 14 TeV ⇔ distances ∼ 10 − 18 cm (Planck scale is 10 − 33 cm - a long way to go!) old stuff: p � � mesons L arge protons H adron C ollider new particle p To separate a “new physics signal” from the “old” background one needs to understand the behavior of QCD cross sections at large energies LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  4. Strong interactions at asymptotic energies: Froissart bound Regge limit: E ≫ everything else E →∞ � Causality ln 2 E ≤ σ tot Froissart, 1962 ⇒ Unitarity Long-standing problem - not explained in any quantum field theory (or string theory) in 50 years! Experiment: σ tot ∼ s 0 . 08 ( s ≡ 4 E 2 c . m . ). Numerically close to ln 2 E . LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  5. Deep inelastic scattering in QCD D q ( x B ) → D q ( x B , Q 2 ) - “scaling violations” DGLAP evolution (LLA( Q 2 ) � 1 Q d dQD q ( x , Q 2 ) = dx ′ K DGLAP ( x , x ′ ) D q ( x ′ , Q 2 ) x Dokshitzer, Gribov, Lipatov, Altarelli, Parisi, 1972-77 K DGLAP = α s ( Q ) K LO + α 2 s ( Q ) K NLO + α 3 s ( Q ) K NNLO ... The DGLAP equation sums up logs of Q 2 m 2 N α s ln Q 2 � n � � D q ( x , Q 2 ) = a n ( x ) + α s b n ( x ) + α 2 � � s c n ( x ) + ... m 2 N n 0 ∼ 1 GeV 2 describes all the experimental data on DIS! One fit at low Q 2 LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  6. Deep inelastic scattering at small x B Regge limit in DIS: E ≫ Q ≡ x B ≪ 1 DGLAP evolution ≡ Q 2 evolution HERA data for xD g ( x ) Q d dQD g ( x B , Q 2 ) = K DGLAP D g ( x B , Q 2 ) Q2 = 20 GeV 2 Q2 = 200 GeV2 Not really a theory - needs the x -dependence of the input xG(x,Q 2) at Q 2 0 ∼ 1 GeV 2 Q2= 5 GeV2 10-4 10-3 -2 10-1 x 10 LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  7. Deep inelastic scattering at small x B Regge limit in DIS: E ≫ Q ≡ x B ≪ 1 DGLAP evolution ≡ Q 2 evolution HERA data for xD g ( x ) Q d dQD g ( x B , Q 2 ) = K DGLAP D g ( x B , Q 2 ) Q2 = 20 GeV 2 Q2 = 200 GeV2 Not really a theory - needs the x -dependence of the input xG(x,Q 2) at Q 2 0 ∼ 1 GeV 2 Q2= 5 GeV2 BFKL evolution ≡ x B evolution (Balitsky, Fadin, Kuraev, Lipatov, 1975-78) 10-4 10-3 -2 10-1 x 10 d D g ( x B , Q 2 ) = K BFKL D g ( x B , Q 2 ) dx B Theory, but with problems LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  8. In pQCD: Leading Log Approximation ⇒ BFKL pomeron s = ( p A + p B ) 2 ≃ 4 E 2 Leading Log Approximation (LLA(x)): α s ≪ 1 , α s ln s ∼ 1 p A p B LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  9. In pQCD: Leading Log Approximation ⇒ BFKL pomeron s = ( p A + p B ) 2 ≃ 4 E 2 Leading Log Approximation (LLA(x)): α s ≪ 1 , α s ln s ∼ 1 p A The sum of gluon ladder diagrams gives σ tot ∼ s 12 α s π ln 2 BFKL pomeron p B Numerically: for DIS at HERA σ ∼ s 0 . 3 = x − 0 . 3 B - qualitatively OK LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  10. In pQCD: Leading Log Approximation ⇒ BFKL pomeron s = ( p A + p B ) 2 ≃ 4 E 2 Leading Log Approximation (LLA(x)): α s ≪ 1 , α s ln s ∼ 1 p A The sum of gluon ladder diagrams gives σ tot ∼ s 12 α s π ln 2 BFKL pomeron p B Numerically: for DIS at HERA σ ∼ s 0 . 3 = x − 0 . 3 B - qualitatively OK LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  11. BFKL vs HERA data F 2 ( x B , Q 2 ) = c ( Q 2 ) x − λ ( Q 2 ) B M.Hentschinski, A. Sabio Vera and C. Salas, 2010 LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  12. DGLAP vs BFKL in particle production Collinear factorization (LLA( Q 2 )): � 1 σ pp → X = dx 1 dx 2 D g ( x 1 , m X ) D g ( x 2 , m X ) σ gg → X 0 x 1 X α s ln m 2 � n , s = 14TeV s � sum of the logs ln X ∼ 1 X m 2 m 2 x 2 N LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  13. DGLAP vs BFKL in particle production Collinear factorization (LLA( Q 2 )): � 1 σ pp → X = dx 1 dx 2 D g ( x 1 , m X ) D g ( x 2 , m X ) σ gg → X 0 x 1 X α s ln m 2 � n , s = 14TeV s � sum of the logs ln X ∼ 1 X m 2 m 2 x 2 N LLA(x): k T -factorization � dk ⊥ 1 dk ⊥ 2 g ( k ⊥ 1 , x A ) g ( k ⊥ σ pp → X = 2 , x B ) σ gg → X ln m 2 � n , � - sum of the logs α s ln x i N ∼ 1 X m 2 Much less understood theoretically. LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  14. DGLAP vs BFKL in particle production Collinear factorization (LLA( Q 2 )): � 1 σ pp → X = dx 1 dx 2 D g ( x 1 , m X ) D g ( x 2 , m X ) σ gg → X 0 x 1 X α s ln m 2 � n , s = 14TeV s � sum of the logs ln X ∼ 1 X m 2 m 2 x 2 N LLA(x): k T -factorization � dk ⊥ 1 dk ⊥ 2 g ( k ⊥ 1 , x A ) g ( k ⊥ σ pp → X = 2 , x B ) σ gg → X ln m 2 � n , � - sum of the logs α s ln x i N ∼ 1 X m 2 Much less understood theoretically. For Higgs production in the central rapidity region x 1 . 2 ∼ m H √ s ≃ 0 . 01 and we know from DIS experiments that at such x B the DGLAP formalism works pretty well ⇒ no need for BFKL resummation LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  15. DGLAP vs BFKL in particle production Collinear factorization (LLA( Q 2 )): � 1 σ pp → X = dx 1 dx 2 D g ( x 1 , m X ) D g ( x 2 , m X ) σ gg → X 0 x 1 X α s ln m 2 � n , s = 14TeV � s X ∼ 1 sum of the logs X ln m 2 m 2 x 2 N LLA(x): k T -factorization � dk ⊥ 1 dk ⊥ 2 g ( k ⊥ 1 , x A ) g ( k ⊥ σ pp → X = 2 , x B ) σ gg → X ln m 2 � n , � N ∼ 1 - sum of the logs α s ln x i X m 2 Much less understood theoretically. For m X ∼ 10 GeV (like ¯ bb pair or mini-jet) collinear factorization does not seem to work well ⇒ some kind of BFKL resummation is needed. LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  16. Uses of BFKL: MHV amplitudes in N = 4 SYM MHV gluon amplitudes ⇔ light-like Wilson-loop polygons Alday, Maldacena (at large α s N c ) Checked up to 6 gluons/2 loops (Korchemsky et. al). LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  17. Uses of BFKL: MHV amplitudes in N = 4 SYM MHV gluon amplitudes ⇔ light-like Wilson-loop polygons Alday, Maldacena (at large α s N c ) Checked up to 6 gluons/2 loops (Korchemsky et. al). BDS ansatz: ln A MHV = IR terms + F n , F n = Γ cusp ( angles ) + ( F 1 ) n + R n ) BFKL in multi-Regge region ⇒ asymptotics of remainder function R n (Lipatov et a)l LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  18. Uses of BFKL: Anomalous dimensions of twist-2 operators Structure functions of DIS are determined by matrix elements of twist-2 operators O ( j ) G = F µ 1 ξ D µ 2 ... D µ j − 2 F ξ µ j G = γ ( j ) ( α s ) µ 2 d d µ 2 O ( j ) O ( j ) G 4 π BFKL gives asymptotics of γ ( j ) at j → 1 in all orders in α s � α s � n � � C ( n ) LO BFKL + α s C ( n ) � γ ( j ) = NLO BFKL j − 1 n Checked by explicit calculation of Feynman diagrams.up to 3 loops in QCD and N = 4 SYM. (Janik et al) Integrablility of spin chains corresponding to evolution of N = 4 SYM operators ⇒ γ ( j ) in 5 loops agrees with BFKL (Janik et al). For all order of pert. theory: Y-system of equations (Gromov, Kazakov, Viera). Hopefully agrees with BFKL. LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

  19. Towards the high-energy QCD σ total BFKL Froissart bound 2 ln s π ln 2 violates σ tot ∼ s 12 α s r e Froissart bound σ tot ≤ ln 2 s w s n a e u r T ⇒ pre-asymptotic behav- ior. Applicability of BFKL pomeron Born Term s True asymptotics as E → ∞ = ? Possible approaches: s ln n s Sum all logs α m Reduce high-energy QCD to 2 + 1 effective theory LANL Nuclear Theory Seminar 13 March 2014 I. Balitsky (JLAB & ODU) High-energy QCD and Wilson lines / 63

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend