helmholtz s theorem
play

Helmholtzs Theorem I s t h i s s o l u t i o n u n i - PowerPoint PPT Presentation

Helmholtzs Theorem I s t h i s s o l u t i o n u n i q u e ? Y E S , a s l o n g a s t h e v e c t o r f e l d ) i t s e l f g o e s t o z e r o a t i n f n i t t F ( r I f


  1. Helmholtz’s Theorem I s t h i s s o l u t i o n u n i q u e ? Y E S , a s l o n g a s t h e v e c t o r f e l d ) i t s e l f g o e s t o z e r o a t i n f n i t t F ( r I f t h e d i v e r g e n c e D ( r ) a n d t h e c u r l C ( r ) o f a v e c t o r f u n c t i o n 2 F ( r ) a r e s p e c i f e d , a n d i f t h e t b o t h g o t o z e r o f a s t e r t h a n 1 / r a s r g o e s t o i n f n i t t , a n d i f F ( r ) i t s e l f g o e s t o z e r o a s r g o e s t o i n f n i t t , t h e n F ( r ) i s u n i q u e l t g i v e n b t F =−∇ U +∇ × W

  2. Ma x w e l l ’ s E qu a t i on s E = ρ ∇ . ⃗ ϵ 0 ∇ . ⃗ B = 0 E =−∂ ⃗ B ∇× ⃗ ∂ t ∂ ⃗ E ∇× ⃗ B =μ 0 ⃗ J +μ 0 ϵ 0 ∂ t Maxwell’s equations specify the divergence and curl of the electric and magnetic fields. Using Helmholtz’s theorem, we can then determine the electric and magnetic fields from Maxwell’s equations.

  3. Ma x w e l l ’ s E qu a t i on s - E L E C T R O O S S T A T I C S ∇ . E = ρ/ϵ 0 ∇ × E = 0 E ( r )=−∇ ( dV ' ) ρ( r ' ) 1 ℜ= r − r ' 4 πϵ 0 ∫ ℜ ρ( r ' ) 1 ^ 4 πϵ 0 ∫ = ℜ dV ' Coulomb’s Law! 2 ℜ σ( r ' ) 1 4 πϵ 0 ∫ ^ For a continuous surface charge, E ( r )= ℜ da' 2 ℜ λ( r ' ) 1 4 π ϵ 0 ∫ ^ For a continuous line charge, E ( r )= ℜ dl' 2 ℜ q i 1 2 ^ 4 π ϵ 0 ∑ For a collection of discrete charges, E ( r )= ℜ i ℜ i i

  4. E L E C T R O S T A T I C S

  5. E L E C T R O S T A T I C S ρ( r ' ) 1 4 πϵ 0 ∫ ^ E ( r )= ℜ dV ' 2 ℜ ∇ . E = ρ/ϵ 0 Helmholtz Theorem ∇ × E = 0 q i 1 4 πϵ 0 ∑ 2 ^ E ( r )= ℜ i ℜ i i Maxwell’s Equations for Electrostatics Coulomb’s Law Force on a test charge Q, F ( r )= Q E ( r ) z σ In principle, we’re done with Electrostatics!

  6. E L E C T R i c F i e l d L i n e s ● Field lines begin on positive charges ● Field lines end on negative charges, or they extend upto infinity ● The strength of the field is indicated by the density of the field lines ● Field lines can never cross

  7. E L E C T R i c F i e l d L i n e s – C l o o s s e d S u r f a c e Flux Φ E = ∮ S E . d S Flux ∝ Number of field lines Flux through a closed surface is a measure of the total charge inside the surface – Gauss’s Law

  8. G a u s s ’ s L a w 4 π ϵ 0 ( r ) ( r q r )= q 1 ∮ E .d a = ∫ 2 ^ 2 sin θ d θ d ϕ ^ ϵ 0 r Point charge q at origin N E = ∑ Principle of superposition E i i = 1 ( ϵ 0 ) N N q i ∮ E .d a = ∑ ( ∮ E .d a ) = ∑ i = 1 i = 1 E .d a = 1 ∮ ϵ 0 Q enc Collection of point charges q i S

  9. G a u s s ’ s L a w ^ q r .d S ∫ ∫ E .d S = 4 π ϵ 0 2 r surface surface | d S | cos θ q ∫ = 4 π ϵ 0 2 r surface d Ω= | d ⃗ S | cos θ q ∫ d Ω = = sin θ d θ d ϕ 4 π ϵ 0 2 r surface q q The solid angle subtended by a surface S is defined 4 π = = ϵ 0 as the surface area of a unit sphere covered by the 4 πϵ 0 surface's projection onto the sphere. A measure of how large an object appears to an observer looking from that point If the point is located outside then the contributions exactly cancel Use superposition principle ---> Add contribution from each charge

  10. G a u s s ’ s L a w – D i f f e r e n t i a l F or m E .d S = ∫ ∫ ∇ . E dV surface vol ρ( r ) 1 ϵ 0 Q enc = ∫ ϵ 0 dV vol ϵ 0 Q enc ⇒ ∇ . E = ρ( r ) E .d a = 1 ∮ ϵ 0 S Helmholtz Theorem ∇ . E = ρ( r ) q 1 E = 2 ^ r ϵ 0 4 π ϵ 0 r Valid for moving charges! Only for static charges Gauss’s Law

  11. C U R L OF T H E E L E C T R I C F I E L D q 1 2 ^ E = r 4 πϵ 0 r ∇ × E = 0 ( r ) . ( dr ^ b b 1 q E . d l = ∫ ∫ r + r d θ ^ θ+ r sin θ d ϕ ^ 2 ^ ϕ) b 4 πϵ 0 r a a 4 π ϵ 0 ( r b ) b b q q 1 1 − 1 ∫ 4 π ϵ 0 ∫ E . d l = 2 dr = r a r a a q ∮ E .d l = 0 ∇ × E = 0 Stokes Theorem ⇒ a True for any charge configuration due to superposition! Valid only for static charges

  12. G a u s s ’ s L a w + S Y MME T R Y - S P H E R E Consider a spherically symmetric charge distribution ρ( r ) E ϕ = 0 Why? Rotate about the z-axis ∮ E . d l = 0 ⇒ E ϕ = 0 ρ( r ) E θ = 0 Why? Rotate about the x-axis ∮ E . d l = 0 ⇒ E θ = 0 R 2 = 1 ϵ 0 ∫ E r . 4 π R ρ( r ) 4 π r 2 .d r Apply Gauss's Law: 0

  13. G a u s s ’ s L a w + S Y MME T R Y - C Y L I N D E R Consider a long, narrow wire with a charge per unit length λ E ϕ = 0 Why? Rotate about the z-axis ∮ E . d l = 0 ⇒ E ϕ = 0 E z = 0 Why? Flip about z-axis Nothing distinguishes z from -z ⇒ E z = 0 E ρ . 2 πρ = 1 ϵ 0 λ Apply Gauss's Law:

  14. G a u s s ’ s L a w + S Y MME T R Y - S U R F A C E Consider an infinite sheet of charge with a surface charge density σ E // ( E x , E y )= 0 Why? Rotate the sheet about any point Translate by any in-plane vector ⇒ E // = 0 Field cannot change ∫ E .d a = 2 A | E | = 1 ϵ 0 σ A Apply Gauss's Law: E = σ ^ n 2 ϵ 0

  15. G a u s s ’ s L a w + S Y MME T R Y - S U R F A C E Consider two parallel plates with equal and opposite charge densities ±σ . What is the electric field? ϵ 0 A C = d σ −σ E = { σ n + σ n = σ ^ ^ ϵ 0 ^ n between the plates 2 ϵ 0 2 ϵ 0 0 everywhere else

  16. G a u s s ’ s L a w + S y mme t r y What is the flux of the electric field through the shaded face? q 24 ϵ 0

  17. T H E E L E C T R I C P O T E N T I A L Gauss’s Law is always true. It may not always be useful! If we can take advantage of the symmetries of a problem, Gauss’s Law can be a very powerful tool. ∇ × E = 0 E = −∇ V V ( r ) ≡ Electric Potential Poisson’s Equation 2 V =−ρ/ϵ 0 ∇ . E =ρ/ϵ 0 ⇒ ∇ In regions of no charge ∇ 2 V = 0 Laplace Equation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend