harnack chains and control problems in hypoelliptic
play

Harnack Chains and Control Problems in Hypoelliptic Partial - PowerPoint PPT Presentation

Introduction Harnack inequalities Asymptotic behavior Boundary regularity Harnack Chains and Control Problems in Hypoelliptic Partial Differential Equations Sergio Polidoro Universit` a di Modena e Reggio Emilia Paris - September 29 -


  1. Introduction Harnack inequalities Asymptotic behavior Boundary regularity Harnack Chains and Control Problems in Hypoelliptic Partial Differential Equations Sergio Polidoro Universit` a di Modena e Reggio Emilia Paris - September 29 - October 3, 2014 Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  2. Introduction Harnack inequalities Asymptotic behavior Boundary regularity Degenerate equations Consider the PDE in Ω ⊆ R N × R : m � X 2 L u ( x , t ) := k u ( x , t ) + X 0 u ( x , t ) − ∂ t u ( x , t ) = 0 , k =1 N � j ∈ C ∞ (Ω) , a k a k X k ( x ) := j ( x ) ∂ x j k = 0 , . . . , m . j =1 Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  3. Introduction Harnack inequalities Asymptotic behavior Boundary regularity Degenerate equations Consider the PDE in Ω ⊆ R N × R : m � X 2 L u ( x , t ) := k u ( x , t ) + X 0 u ( x , t ) − ∂ t u ( x , t ) = 0 , k =1 N � j ∈ C ∞ (Ω) , a k a k X k ( x ) := j ( x ) ∂ x j k = 0 , . . . , m . j =1 Control problem for ◮ γ ′ ( t ) = � m � � j =1 ω j ( t ) X j ( γ ( t )) + X 0 ( γ ( t )) − ∂ t Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  4. Introduction Harnack inequalities Asymptotic behavior Boundary regularity Focus on: ◮ Harnack inequalities ◮ [Cinti, Nystr¨ om, P.] (2010) ◮ [Cinti, Menozzi, P.] (2014) ◮ [Kogoj, Pinchover, P.] (submitted) ◮ Asymptotic bounds for positive solutions ◮ [Boscain, P.] (2007), [Cinti, P.] (2008) ◮ [Cinti, Menozzi, P.] (2014) ◮ [Garofalo, P.] (in progress) ◮ Boundary Harnack inequality for Kolmogorov equations ◮ [Cinti, Nystr¨ om, P.] (2012) ◮ [Cinti, Nystr¨ om, P.] (2013) Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  5. Introduction Harnack inequalities Asymptotic behavior Boundary regularity Plan of the talk ◮ Harnack inequalities for Parabolic Equations ◮ Harnack inequalities for Degenerate PDEs ◮ Asymptotic bounds for Degenerate PDEs ◮ Boundary Harnack inequality for Kolmogorov Equations Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  6. Introduction Harnack inequalities Asymptotic behavior Boundary regularity Euclidean setting Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  7. b Introduction Harnack inequalities Asymptotic behavior Boundary regularity 1 - Parabolic equations Theorem ([Pini] - 1954, [Hadamard] - 1954) Let Q r ( x , t ) = B ( x , r ) × ] t − r 2 , t [ ⊂ R n +1 , and let α, β, γ, δ ∈ ]0 , 1[ with α + β + γ < 1 . Then there exists C = C ( α, β, γ, δ, n ) such that sup u ≤ C inf u Q + r ( x , t ) Q − r ( x , t ) for every u : Q r ( x , t ) → R , u ≥ 0 , satisfying u t = ∆ u. ( x , t ) δ r α r 2 β r 2 r 2 γ r 2 δ r Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  8. b Introduction Harnack inequalities Asymptotic behavior Boundary regularity Equivalent formulation Theorem For any compact set K ⊂ Q 1 (0 , 0) there exists C K > 0 : sup u ≤ C K u ( x , t ) ( x , t )+ δ r K for every non-negative caloric function u : Q r ( x , t ) → R . ( x , t ) ≈ r 2 ( x , t ) + δ r K δ r ( x , t ) = ( rx , r 2 t ) Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  9. Introduction Harnack inequalities Asymptotic behavior Boundary regularity 2 - Bounds of the fundamental solution Theorem ([Nash - 1958] [Moser - 1964] [Aronson, Serrin - 1967]) Let Γ be the fundamental solution of N R N × R . � � � ∂ t − ∂ x i a ij ( x , t ) ∂ x j in i , j =1 Then there exist two positive constants c , C such that e − C | x − ξ | 2 e − c | x − ξ | 2 c C t − τ . ≤ Γ( x , t , ξ, τ ) ≤ t − τ N N ( t − τ ) ( t − τ ) 2 2 Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  10. Introduction Harnack inequalities Asymptotic behavior Boundary regularity Uniqueness in the Cauchy problem Corollary Let u be a solution to � ∂ t u ( x , t ) − � N � � ( x , t ) ∈ R N × ]0 , T [ , i , j =1 ∂ x i a ij ( x , t ) ∂ x j u ( x , t ) x ∈ R N . u ( x , 0) = 0 ◮ Upper bound ⇒ If | u ( x , t ) | ≤ Me C | x | 2 in R N × ]0 , T [ , then u ≡ 0 . ◮ Lower bound ⇒ If u ( x , t ) ≥ 0 in R N × ]0 , T [ , then u ≡ 0 . Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  11. Introduction Harnack inequalities Asymptotic behavior Boundary regularity 3 - Boundary behavior ◮ Divergence form Parabolic Equations ◮ [Fabes and Kenig] (1981) ◮ [Fabes and Stroock] (1986) ◮ [Garofalo] (1984) ◮ [Krylov and Safonov] (1980) ◮ [Fabes, Safonov and Yuan] (1999) ◮ Non Divergence form ◮ Fabes, Garofalo and Salsa (1986) ◮ [Fabes, Safonov (1997) ◮ [Nystr¨ om] (1997) ◮ Divergence and non Divergence ◮ [Bauman] (1984) ◮ [Caffarelli, Fabes, Mortola and Salsa] (1981) ◮ [Fabes, Garofalo, Marin-Malave and Salsa] (1988) ◮ [Jerison and Kenig] (1982) Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  12. b Introduction Harnack inequalities Asymptotic behavior Boundary regularity Boundary Harnack inequality Theorem ([Salsa] - 1981) Let Σ be a Lipschitz subset of the parabolic boundary of Q 1 (0 , 0) , and let K be a compact subset of Q 1 (0 , 0) such that K ∩ ∂ Q 1 (0 , 0) ⊂ Σ . Then there exists C K , Σ > 0 : sup u ≤ C K , Σ u ( x , t ) K r ( x , t ) for every non-negative solution u : Q r ( x , t ) → R to ∆ u = u t vanishing at Σ r ( x , t ) . ( x , t ) Σ r ( x , t ) K r ( x , t ) Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  13. Introduction Harnack inequalities Asymptotic behavior Boundary regularity Harnack inequalities for Degenerate Partial Differential Equations Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  14. Introduction Harnack inequalities Asymptotic behavior Boundary regularity Degenerate equations Consider the PDE in R N × R : m � X 2 L u ( x , t ) = k u ( x , t ) + X 0 u ( x , t ) − ∂ t u ( x , t ) , k =1 N � a k a k j ∈ C ∞ , X k ( x ) = j ( x ) ∂ x j k = 0 , . . . , m . j =1 Examples: � 2 + � 2 − ∂ t , � � ( x , y , s ) ∈ R 3 ◮ L := ∂ x + 2 y ∂ s ∂ y − 2 x ∂ s ◮ L := ∂ 2 ( x , y ) ∈ R 2 x + x ∂ y − ∂ t , ◮ L := ∂ 2 x + x 2 ∂ y − ∂ t , ( x , y ) ∈ R 2 Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  15. Introduction Harnack inequalities Asymptotic behavior Boundary regularity Regularity Theorem ([H¨ ormander] - 1967) Let u be a (distributional) solution to L u = f in Ω ⊂ R N × R . If � � = R N +1 span X 0 − ∂ t , X 1 , . . . , X m , [ X i , X j ] , . . . , [ X i , . . . , [ X j , X l ]] Then f ∈ C ∞ (Ω) u ∈ C ∞ (Ω) . ⇒ Commutators: [ X i , X j ] f := X i X j f − X j X i f Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  16. Introduction Harnack inequalities Asymptotic behavior Boundary regularity Example Kolmogorov operator: L := ∂ 2 x + x ∂ y − ∂ t ◮ X 1 = ∂ x , X 0 = x ∂ y ,       0 1 0 X 0 − ∂ t ∼ x X 1 ∼ 0 [ X 1 , X 0 − ∂ t ] ∼ 1       − 1 0 0 Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  17. b Introduction Harnack inequalities Asymptotic behavior Boundary regularity Question It is possible to prove the extend the parabolic result to degenerate Kolmogorov equations? Theorem For any compact set K ⊂ Q 1 (0 , 0) there exists C K > 0 : sup u ≤ C K u ( x , t ) K r ( x , t ) for every non-negative solution u : Q r ( x , t ) → R to L u = 0 ? ( x , t ) ≈ r 2 K r ( x , t ) Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

  18. b Introduction Harnack inequalities Asymptotic behavior Boundary regularity Strong maximum principle Theorem ([Bony] - 1969) Let u : Q → R be a non-positive solution to u xx + xu y = u t . If u (0 , 0 , 0) = 0 , then... t (0 , 0 , 0) y x

  19. b Introduction Harnack inequalities Asymptotic behavior Boundary regularity Strong maximum principle Theorem ([Bony] - 1969) Let u : Q → R be a non-positive solution to u xx + xu y = u t . If u (0 , 0 , 0) = 0 , then... t (0 , 0 , 0) y x

  20. b Introduction Harnack inequalities Asymptotic behavior Boundary regularity Strong maximum principle Theorem ([Bony] - 1969) Let u : Q → R be a non-positive solution to u xx + xu y = u t . If u (0 , 0 , 0) = 0 , then... t (0 , 0 , 0) y x

  21. b b Introduction Harnack inequalities Asymptotic behavior Boundary regularity Strong maximum principle Theorem ([Bony] - 1969) Let u : Q → R be a non-positive solution to u xx + xu y = u t . If u (0 , 0 , 0) = 0 , then... t (0 , 0 , 0) (0 , 0 , 0) y y x ... u ≡ 0 in the Propagation set A (0 , 0) . Harnack Chains and Control Problems in Hypoelliptic PDEs Universit` a di Modena e Reggio Emilia

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend