hard lepton hadron processes in pqcd i
play

Hard lepton-hadron processes in pQCD (I) Inclusive deep-inelastic - PowerPoint PPT Presentation

Generalized double-logarithmic large- x resummation Andreas Vogt (University of Liverpool) mainly with G. Soar, A. Almasy (UoL), S. Moch (DESY), J. Vermaseren (NIKHEF) Hard lepton-hadron processes in higher-order perturbative QCD Large- x/ large-


  1. Generalized double-logarithmic large- x resummation Andreas Vogt (University of Liverpool) mainly with G. Soar, A. Almasy (UoL), S. Moch (DESY), J. Vermaseren (NIKHEF) Hard lepton-hadron processes in higher-order perturbative QCD Large- x/ large- N splitting functions P ik and coefficient functions C a,i ln n (1 − x ) behaviour of DIS, SIA and non-singlet DY physical kernels All-order predictions for C a, ns , fourth-order ln 6 , 5 , 4 (1 − x ) of P ik MV, arXiv: 0902.2342, 0909.2124; SMVV, 0912.0369 p.1

  2. Generalized double-logarithmic large- x resummation Andreas Vogt (University of Liverpool) mainly with G. Soar, A. Almasy (UoL), S. Moch (DESY), J. Vermaseren (NIKHEF) Hard lepton-hadron processes in higher-order perturbative QCD Large- x/ large- N splitting functions P ik and coefficient functions C a,i ln n (1 − x ) behaviour of DIS, SIA and non-singlet DY physical kernels All-order predictions for C a, ns , fourth-order ln 6 , 5 , 4 (1 − x ) of P ik , C L, g Iteration of (next-to) leading-log unfactorized 1 /N structure functions LL resummation of off-diagonal splitting and coefficient functions General D -dimensional structure of large- x DIS and SIA amplitudes Verification and extension to higher logarithmic accuracy for DIS / SIA MV, arXiv: 0902.2342, 0909.2124; SMVV, 0912.0369; A.V., 1005.1606; ASV, 1010.nnnn p.1

  3. Hard lepton-hadron processes in pQCD (I) Inclusive deep-inelastic scattering (DIS), semi-incl. l + l − annihilation (SIA) l Left → right: DIS, q spacelike, Q 2 = − q 2 γ ∗ ( q ) P = ξp , f h i = parton distributions c ai i ( P ) Top → bottom: l + l − , q timelike, Q 2 = q 2 f h p = ξP , fragmentation distributions i h ( p ) Drell-Yan (DY) l + l − production: bottom → top, 2 nd hadron from right ( { . . . } ) Structure functions / normalized cross sections F a : coefficient functions h i i ( µ 2 ) { ⊗ f h ′ F a ( x, Q 2 ) = C a,i { j } ( α s ( µ 2 ) , µ 2 /Q 2 ) ⊗ f h j ( µ 2 ) } ( x ) + O (1 /Q (2) ) Scaling variables: x = Q 2 / (2 p · q ) in DIS etc. µ : renorm. / mass-fact. scale p.2

  4. Hard lepton-hadron processes in pQCD (II) Parton / fragmentation distributions f i : (renorm. group) evolution equations h i d P ( S,T ) d ln µ 2 f i ( ξ, µ 2 ) = ( α s ( µ 2 )) ⊗ f k ( µ 2 ) ( ξ ) ik ⊗ = Mellin convolution. Initial conditions: fits to reference observables Expansion in α s : splitting functions P , coefficient fct’s c a of observables α s P (0) + α 2 s P (1) + α 3 s P (2) + α 4 s P (3) + . . . P = » – α n a c (0) + α s c (1) + α 2 s c (2) + α 3 s c (3) C a = + . . . a a a a s | {z } NLO: first real prediction of size of cross sections NNLO, P (2) , c (2) a : first serious error estimate of pQCD predictions N 3 LO: for high precision ( α s from DIS), slow convergence (Higgs in pp/p ¯ p ) The 2010 frontier: α 4 s /α 3 s for DIS / SIA ( + DY) Baikov, Chetyrkin; MV, . . . p.3

  5. MS splitting functions at large x / large N R 1 0 dx ( x N − 1 {− 1 } ) f ( x ) { + } : M-convolutions → products Mellin trf. f ( N ) = ln n (1 − x ) ( − 1) n +1 ( − 1) n ln n +1 N + . . . , ln n (1 − x ) ln n N + . . . M M = = (1 − x ) + n + 1 N Diagonal splitting functions: no higher-order enhancement at N 0 , N − 1 1 P ( l − 1) qq / gg ( N ) = A ( l ) q / g ln N + B ( l ) q / g + C ( l ) N ln N + . . . , A g = C A /C F A q q / g . . . ; Korchemsky (89); Dokshitzer, Marchesini, Salam (05) p.4

  6. MS splitting functions at large x / large N R 1 0 dx ( x N − 1 {− 1 } ) f ( x ) { + } : M-convolutions → products Mellin trf. f ( N ) = ln n (1 − x ) ( − 1) n +1 ( − 1) n ln n +1 N + . . . , ln n (1 − x ) ln n N + . . . M M = = (1 − x ) + n + 1 N Diagonal splitting functions: no higher-order enhancement at N 0 , N − 1 1 P ( l − 1) qq / gg ( N ) = A ( l ) q / g ln N + B ( l ) q / g + C ( l ) N ln N + . . . , A g = C A /C F A q q / g . . . ; Korchemsky (89); Dokshitzer, Marchesini, Salam (05) Off-diagonal: double-log behaviour, colour structure with C F = C A − C F A C − 1 P ( l ) − 1 P ( l ) N ln 2 l N # C l 1 gq / n = qg f A F F f ) C l − 1 N ln 2 l − 1 N ( # C 1 + F + # C F + # n + . . . A A F Double logs ln n N , l +1 ≤ n ≤ 2 l vanish for C F = C A ( → SUSY case) Aim: obtain, at least, these (next-to) leading terms to all orders l in α s p.4

  7. MS coefficient functions at large x / large N dσ q¯ 1 q ‘Diagonal’ [ O (1) ] coeff. fct’s for F 2 , 3 ,φ in DIS, F T ,A,φ in SIA, F DY = σ 0 dQ 2 2 , q /φ, g /... = # ln 2 l N + . . . + N − 1 (# ln 2 l − 1 N + . . . ) + . . . C ( l ) N 0 parts: threshold exponentiation Sterman (87); Catani, Trentadue (89); . . . Exponents known to next-to-next-to-next-to-leading log (N 3 LL) accuracy - mod. A (4) ⇒ highest seven (DIS), six (SIA, DY, Higgs prod.) coefficients known to all orders DIS: MVV (05), DY / Higgs prod.: MV (05); Laenen, Magnea (05); Idilbi, Ji, Ma, Yuan (05) ( + more papers, esp. using SCET, from 2006), SIA: Blümlein, Ravindran (06); MV (09) p.5

  8. MS coefficient functions at large x / large N dσ q¯ 1 q ‘Diagonal’ [ O (1) ] coeff. fct’s for F 2 , 3 ,φ in DIS, F T ,A,φ in SIA, F DY = σ 0 dQ 2 2 , q /φ, g /... = # ln 2 l N + . . . + N − 1 (# ln 2 l − 1 N + . . . ) + . . . C ( l ) N 0 parts: threshold exponentiation Sterman (87); Catani, Trentadue (89); . . . Exponents known to next-to-next-to-next-to-leading log (N 3 LL) accuracy - mod. A (4) ⇒ highest seven (DIS), six (SIA, DY, Higgs prod.) coefficients known to all orders DIS: MVV (05), DY / Higgs prod.: MV (05); Laenen, Magnea (05); Idilbi, Ji, Ma, Yuan (05) ( + more papers, esp. using SCET, from 2006), SIA: Blümlein, Ravindran (06); MV (09) ‘Off-diagonal’ [ O ( α s ) ] quantities: leading N − 1 double logarithms C ( l ) φ, q / 2 , g /... = N − 1 (# ln 2 l − 1 N + # ln 2 l − 2 N + . . . ) + . . . Longitudinal DIS / SIA structure functions [ recall: l = order in α s – 1] C ( l ) C ( l ) L , q = N − 1 (# ln 2 l N + . . . ) + . . . , L , g = N − 2 (# ln 2 l N + . . . ) + . . . Aim: predict highest N − 1 [ N − 2 for C L , g ] double logarithms to all orders p.5

  9. Non-singlet and singlet physical kernels Eliminate parton densities from scaling violations of observables ( µ = Q ) X dF d C a l +1 = KF ≡ K l F = d ln Q 2 q + CP q s d ln Q 2 l =0 “ ” β ( a s ) dC C − 1 + [ C, P ] C − 1 + P = F da s p.6

  10. Non-singlet and singlet physical kernels Eliminate parton densities from scaling violations of observables ( µ = Q ) X dF d C a l +1 = KF ≡ K l F = d ln Q 2 q + CP q s d ln Q 2 l =0 “ ” β ( a s ) dC C − 1 + [ C, P ] C − 1 + P = F da s dσ 1 q ¯ q Non-singlet: F = F 2 , 3 ,φ and F L in DIS, F T ,A,φ and F L in SIA, F DY = dQ 2 σ 0 Singlet: a) F = ( F 2 , F φ ) with large- m top Higgs-exchange DIS Furmanski, Petronzio (81); . . . Coefficient functions for F φ to order α 2 s /α 3 s Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni; SMVV (09) F L = F L /a s c (0) b) F = ( F 2 , b F L ) with b Catani (96); Blümlein et al. (00) L,q p.6

  11. Non-singlet and singlet physical kernels Eliminate parton densities from scaling violations of observables ( µ = Q ) X dF d C a l +1 = KF ≡ K l F = d ln Q 2 q + CP q s d ln Q 2 l =0 “ ” β ( a s ) dC C − 1 + [ C, P ] C − 1 + P = F da s dσ 1 q ¯ q Non-singlet: F = F 2 , 3 ,φ and F L in DIS, F T ,A,φ and F L in SIA, F DY = dQ 2 σ 0 Singlet: a) F = ( F 2 , F φ ) with large- m top Higgs-exchange DIS Furmanski, Petronzio (81); . . . Coefficient functions for F φ to order α 2 s /α 3 s Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni; SMVV (09) F L = F L /a s c (0) b) F = ( F 2 , b F L ) with b Catani (96); Blümlein et al. (00) L,q NNLO / N 3 LO: all physical kernels K above single-log enhanced at large N Conjecture: double-log contributions also vanish at all higher orders in α s p.6

  12. Non-singlet evolution kernels and predictions DIS / SIA a � = L leading-logarithmic kernels, with p qq ( x ) = 2 / (1 − x ) + − 1 − x K a, 0 ( x ) = 2 C F p qq ( x ) ˆ ˜ F β 0 ∓ 8 C 2 K a, 1 ( x ) = ln (1 − x ) p qq ( x ) − 2 C F ln x ˆ ˜ F β 0 ln x + O (ln 2 x ) K a, 2 ( x ) = ln 2 (1 − x ) p qq ( x ) F β 2 0 ± 12 C 2 2 C ˆ ˜ 0 ln x + O (ln 2 x ) K a, 3 ( x ) = ln 3 (1 − x ) p qq ( x ) F β 3 0 ∓ 44 / 3 C 2 F β 2 − 2 C ˆ ˜ 0 ln x + O (ln 2 x ) K a, 4 ( x ) = ln 4 (1 − x ) p qq ( x ) F β 4 0 ± ξ K 4 C 2 F β 3 2 C First term: leading large n f , all orders via C 2 of Mankiewicz, Maul, Stein (97) p.7

  13. Non-singlet evolution kernels and predictions DIS / SIA a � = L leading-logarithmic kernels, with p qq ( x ) = 2 / (1 − x ) + − 1 − x K a, 0 ( x ) = 2 C F p qq ( x ) ˆ ˜ F β 0 ∓ 8 C 2 K a, 1 ( x ) = ln (1 − x ) p qq ( x ) − 2 C F ln x ˆ ˜ F β 0 ln x + O (ln 2 x ) K a, 2 ( x ) = ln 2 (1 − x ) p qq ( x ) F β 2 0 ± 12 C 2 2 C ˆ ˜ 0 ln x + O (ln 2 x ) K a, 3 ( x ) = ln 3 (1 − x ) p qq ( x ) F β 3 0 ∓ 44 / 3 C 2 F β 2 − 2 C ˆ ˜ 0 ln x + O (ln 2 x ) K a, 4 ( x ) = ln 4 (1 − x ) p qq ( x ) F β 4 0 ± ξ K 4 C 2 F β 3 2 C First term: leading large n f , all orders via C 2 of Mankiewicz, Maul, Stein (97) Conjecture ⇒ coefficients of highest three logs from fourth order in α s , ln 7 , 6 , 5 (1 − x ) at order α 4 for F 1 , 2 , 3 in DIS and F T , I , A in SIA etc s Leading terms: K 1 = K 2 , K T = K I [ total (‘integrated’) fragmentation fct.] ⇒ also three logarithms for space- and timelike F L : ln 6 , 5 , 4 (1 − x ) at α 4 s etc Alternative derivation: physical kernels for F L , agreement non-trivial check p.7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend