hadron masses and factorization in dis
play

Hadron Masses and Factorization (in DIS) Ted Rogers Jefferson - PowerPoint PPT Presentation

Hadron Masses and Factorization (in DIS) Ted Rogers Jefferson Lab/Old Dominion University Quark-Hadron Duality 2018, James Madison University, Sept 24 2018 1 Hadronic vs. Partonic Degrees of Freedom Q 1 GeV, large x. Approach


  1. Hadron Masses and Factorization (in DIS) Ted Rogers Jefferson Lab/Old Dominion University Quark-Hadron Duality 2018, James Madison University, Sept 24 2018 1

  2. Hadronic vs. Partonic Degrees of Freedom • Q ≈ 1 GeV, large x. • Approach kinematical issues in terms of what they reveal about underlying degrees of freedom. 2

  3. Two Questions • What are kinematical target mass approximations? • When/how do they matter? 3

  4. Target Mass Corrections • Large number of TMC formalisms: Brady, Accardi, Hobbs, Melnitchouk PHYSICAL REVIEW D 84, 074008 (2011 ) – OPE based – Feynman graph based – Higher twist – Standard factorization (Aivazis, Olness, Tung) 4

  5. Standard setup • Definition of a cross section N ! | M e,P ! N | 2 d 3 p 1 d 3 p 2 d 3 p N X (2 ⇡ ) 4 � (4) d � = · · · × P + l − p i 2 � ( s, m 2 e , M 2 ) 1 / 2 (2 ⇡ ) 3 2 E 1 (2 ⇡ ) 3 2 E 2 (2 ⇡ ) 3 2 E N i =1 − 2 ↵ 2 E 0 d � Single photon exchange ( s − M 2 ) Q 4 L µ⌫ W µ⌫ em d 3 l 0 = F 1 + ( P µ − q µ P · q/q 2 )( P ⌫ − q ⌫ P · q/q 2 ) − g µ⌫ + q µ q ⌫ ✓ ◆ W µ⌫ = F 2 q 2 P · q 5

  6. Massless Target Approximation (MTA) • Exact: P + , M 2 ✓ ◆ ⇣p ⌘ M 2 + P 2 P = z , 0 , 0 , P z = 2 P + , 0 T • The approximation: P → ˜ P + , 0 , 0 T � � P = ( P z , 0 , 0 , P z ) = M 2 /Q 2 → 0 2 P · q → 2 ˜ P · q • Usually taken for granted at large Q and small x 6

  7. MTA in Light-Cone Fractions • Light-cone ratios: − q + 2 x Bj – No MTA: P + = x N ≡ q 4 x 2 Bj M 2 1 + 1 + Q 2 ! x 2 Bj M 2 − q + – MTA: P + = x Bj + O Q 2 7

  8. Structure Functions − g µ ⌫ + q µ q ⌫ ✓ ◆ W µ ⌫ = F 1 ( x N , Q ) q 2 ◆ F 2 ( x N , Q ) ✓ ◆ ✓ P µ − P · q P ⌫ − P · q q 2 q µ q 2 q ⌫ + P · q 8

  9. Structure Functions − g µ ⌫ + q µ q ⌫ ✓ ◆ W µ ⌫ = F 1 ( x N , Q ) q 2 ◆ F 2 ( x N , Q ) ✓ ◆ ✓ P µ − P · q P ⌫ − P · q q 2 q µ q 2 q ⌫ + P · q F 1 ( x N , Q 2 ) ≡ P 1 ( x N , Q 2 , M 2 ) µν W µν F 2 ( x N , Q 2 ) ≡ P 2 ( x N , Q 2 , M 2 ) µν W µν 2 Q 2 x 2 P 1 ( x N , Q 2 , M 2 ) µ ν ≡ − 1 2 g µ ν + N N + Q 2 ) 2 P µ P ν ( M 2 x 2 N + Q 2 � 2 ! P 2 ( x N , Q 2 , M 2 ) µ ν ≡ 12 Q 4 x 3 � Q 2 − M 2 x 2 � � M 2 x 2 N N P µ P ν − g µ ν N ) 4 12 Q 2 x 2 ( Q 2 + M 2 x 2 N 9

  10. MTA M 2 /Q 2 ! 0 2 P · q ! 2 ˜ P · q F 1 ( x Bj , Q 2 ) ≡ P 1 ( x Bj , Q 2 , 0) µν W µν F 2 ( x Bj , Q 2 ) ≡ P 2 ( x Bj , Q 2 , 0) µν W µν − g µ ⌫ + q µ q ⌫ ✓ ◆ W µ ⌫ → F 1 ( x Bj , Q 2 ) q 2 P µ − q µ ˜ P ⌫ − q ⌫ ˜ + ( ˜ P · q/q 2 )( ˜ P · q/q 2 ) F 2 ( x Bj , Q 2 ) ˜ P · q 10

  11. Factorization • Power expansion ✓ m 2 ◆ d � Z dˆ � d x Bj d Q 2 = d ⇠ x Bj d Q 2 f ( ⇠ ) + O Q 2 dˆ • m 2 = parton virtuality, transverse momentum, mass … • What about hadron masses? For now assume M 2 ≠ O(m 2 ) 11

  12. Factorization and partonic light-cone fractions Q 2 ✓ ◆ � x N P + , q = 2 x N P + , 0 T q k + = O ( Q ) k + q k 2 = O m 2 � � k ( k + q ) 2 = O m 2 � � 12

  13. Factorization and partonic light-cone fractions Q 2 ✓ ◆ � x N P + , q = 2 x N P + , 0 T q k + = O ( Q ) k + q k 2 = O m 2 � � k ( k + q ) 2 = O m 2 � � � � � � 2 k + q − + 2 k − q + � Q 2 + k 2 = O m 2 � � 2 k + q − = Q 2 + O m 2 � � 13

  14. Factorization and partonic light-cone fractions Q 2 ✓ ◆ � x N P + , q = 2 x N P + , 0 T q k + = O ( Q ) k + q k 2 = O m 2 � � k ( k + q ) 2 = O m 2 � � � � � � 2 k + q − + 2 k − q + � Q 2 + k 2 = O m 2 � � 2 k + q − = Q 2 + O m 2 � � ⇠ ⌘ k + ✓ m 2 ◆ P + = x N + O Q 2 14

  15. Factorization and partonic light-cone fractions Q 2 ✓ ◆ � x N P + , q = 2 x N P + , 0 T q k + = O ( Q ) k + q k 2 = O m 2 � � k ( k + q ) 2 = O m 2 � � � � � � 2 k + q − + 2 k − q + � Q 2 + k 2 = O m 2 � � 2 k + q − = Q 2 + O m 2 � � ⇠ ⌘ k + ✓ m 2 ◆ P + = x N + O Q 2 ! x 2 Bj M 2 ✓ m 2 ◆ = x Bj + O + O Q 2 Q 2 15

  16. Factorization Power Series • Drop O(m 2 /Q 2 ) ?: Necessary for factorization. • Drop O(x 2 M 2 /Q 2 ) ?: Not necessary for Bj factorization. 16

  17. MTA with factorization • Make approximations with exact target momentum: W µ ν ! W µ ν fact Introduce O(m 2 /Q 2 ) errors • Then do MTA: W µν fact ! W µν fact , TMC 2 M 2 /Q 2 ) errors Introduce O(x Bj 17

  18. Aivazis, Olness, Tung (AOT) Phys. Rev. D 50, 3085 (1994) • Normal factorization, just keeping exact mass. – MTA Z 1 d ⇠ W µ ν = ˆ W µ ν ( x Bj / ⇠ , q ) f ( ⇠ ) + O m 2 /Q 2 � M 2 /Q 2 � � � + O ⇠ x Bj – TMC Z 1 d ⇠ W µν = ˆ W µν ( x N /⇠, q ) f ( ⇠ ) + O m 2 /Q 2 � � ⇠ x N • The only “pure” kinematical correction. Others involve assumptions about dynamics. 18

  19. What if the target mass is important? • How to test? – Scaling with Nachtmann rather than Bjorken variable? – Improved universality. Extend range of pQCD? See N. Sato talk • Why does it give improvement? Something about nucleon structure? 19

  20. Partonic interpretation of target mass effects • Small scales q k + q • Exact target k mass useful if M 2 J k 2 Q 2 Q 2 k 2 suppression by T Q 2 partonic scales is greater than x 2 Bj M 2 target mass x 2 Bj M 2 Q 2 X Q 2 20

  21. Partonic interpretation of target mass effects • Parton virtuality q vs. hadron mass k + q k k 2 Q 2 x 2 Bj M 2 + B k 2 ⇠ A Q 2 Q 2 ?? ?? 21

  22. Partonic interpretation of target mass effects • Two scales? See E. Moffat talk | k 2 | ⌧ x 2 Bj M 2 q k + q k P 22

  23. Operator product expansion versus AOT • AOT (direct factorization): – Direct power expansion in small partonic mass scales – Keep exact momentum expressions • OPE: – Transform to Mellin moment space – Expand in 1/Q (both twist and target momentum) – Truncate twist • Identify leading M/Q part • Identify remaining series of M/Q – Invert leading M/Q (F 1 (0) ) – Invert series of M/Q (F 1 TMC ) – Relate F 1 (0) and F 1 TMC 23

  24. Summary • Normal factorization derivation naturally leads to x N as scaling variable/independent variable. • These are easy to retain (AOT). • Sensitivity to a target mass might say something about nucleon structure. – Compare Proton, Kaon, Pion, Nucleus targets 24

  25. Backup 25

  26. Operator product expansion versus AOT • AOT (direct factorization): – Direct power expansion in small partonic mass scales – Keep exact momentum expressions • OPE: – Transform to Mellin moment space – Expand in 1/Q (both twist and target momentum) – Truncate twist • Identify leading M/Q part • Identify remaining series of M/Q – Invert leading M/Q (F 1 (0) ) – Invert series of M/Q (F 1 TMC ) – Relate F 1 (0) and F 1 TMC 26

  27. ρ 2 ≡ 1 + 4 x 2 Bj M 2 OPE-based Q 2 • Georgi-Politzer (1976) ( x Bj , Q 2 ) = 1 + ρ 2 ρ F (0) F TMC ( x N , Q 2 ) + 1 1 Z 1 ) + ρ 2 � 1 d u u 2 F (0) ( u, Q 2 ) + 1 4 ρ 2 x N Z 1 Z 1 ) + ( ρ 2 � 1) 2 d v v 2 F (0) ( v, Q 2 ) d u 1 8 x Bj ρ 3 x N u • What is F 1,2 (0) ? 27

  28. As exact structure function • Power series: ◆ j ✓ M 2 ∞ ∞ 2 1 X X N j,l C 2 l +2 j A 2 j +2 l +2 F 2 = x 2 l Q 2 x Bj Bj j =0 l =0 Drop Higher Twist • Mellin moments: Z 1 ◆ j ∞ ✓ M 2 ¯ X x n − 2 N n,j C n +2 j A 2 j + n Bj F 2 = Q 2 0 j =0 • Leading twist Z 1 d y y n − 2 F (0) ( y, Q 2 ) ⌘ C n A n 2 0 Z i ∞ ◆ j ✓ M 2 1 • ¯ d n x 1 − n N n,j C n +2 j A 2 j + n F 2 = Bj Q 2 2 π i 28 − i ∞

  29. As exact structure function • Power series: ◆ j ✓ M 2 ∞ ∞ 2 1 X X N j,l C 2 l +2 j A 2 j +2 l +2 F 2 = x 2 l Q 2 x Bj Bj j =0 l =0 • Integer Mellin moments: Z 1 ◆ j ∞ ✓ M 2 ¯ X x n − 2 N n,j C n +2 j A 2 j + n Bj F 2 = Q 2 0 j =0 • Leading twist Z 1 Series in α s d y y n − 2 F (0) ( y, Q 2 ) ⌘ C n A n OPE provides info about 2 0 integer values Z i ∞ ◆ j ✓ M 2 1 • ¯ d n x 1 − n N n,j C n +2 j A 2 j + n F 2 = Bj Q 2 2 π i 29 − i ∞

  30. As exact structure function • Power series: ◆ j ✓ M 2 ∞ ∞ 2 1 X X N j,l C 2 l +2 j A 2 j +2 l +2 F 2 = x 2 l Q 2 x Bj Bj j =0 l =0 • Integer Mellin moments: Z 1 ◆ j ∞ ✓ M 2 ¯ X x n − 2 N n,j C n +2 j A 2 j + n Bj F 2 = Q 2 0 j =0 • Leading twist, zero mass Z 1 d y y n − 2 F (0) ( y, Q 2 ) ⌘ C n A n 2 0 Z i ∞ ◆ j ✓ M 2 1 ¯ Extend to non-integer values d n x 1 − n N n,j C n +2 j A 2 j + n F 2 = Bj Q 2 2 π i 30 − i ∞

  31. As exact structure function • Invert: Z i ∞ ◆ j ✓ M 2 1 ¯ d n x 1 − n N n,j C n +2 j A 2 j + n F 2 = Bj Q 2 2 π i − i ∞ ( x Bj , Q 2 ) = 1 + ρ 2 ρ F (0) F TMC ( x N , Q 2 ) + 1 1 Z 1 ) + ρ 2 � 1 d u u 2 F (0) ( u, Q 2 ) + 1 4 ρ 2 x N Z 1 Z 1 ) + ( ρ 2 � 1) 2 d v v 2 F (0) ( v, Q 2 ) d u 1 8 x Bj ρ 3 x N u 31

  32. • Functions with equal moments up to N = 13 Structure Functions F ( x ) 5 1 0.500 0.100 0.050 0.010 x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 32

  33. As fit to phenomenological structure function C α n X F 2 = j/i ( x/ ξ , Q ) ⌦ f i/P ( ξ ; Q ) s j • Finite order hard part • Parametrization of pdf • Fit needed all the way to x = 1 • Theoretical leading twist ≠ pheno fit near x = 1 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend