grb 080319b
play

GRB 080319B A prompt z=0.937 naked eye optical GRB Racusin et - PowerPoint PPT Presentation

Theory of the Prompt and High Energy Emission of G amma- R ay B ursts sts Peter Mszros, collabs: Kenji Toma, XueFeng Wu Pennsylvania State University GRB 080319B A prompt z=0.937 naked eye optical GRB Racusin et al, 08 Nature


  1. Theory of the Prompt and High Energy Emission of G amma- R ay B ursts sts Peter Mészáros, collabs: Kenji Toma, XueFeng Wu Pennsylvania State University

  2. GRB 080319B A prompt z=0.937 “naked eye” optical GRB Racusin et al, 08 Nature 455:183 γ , opt prompt l.c. appear similar → same emission region, e.g. “internal” shock; but rad. mechanism? Interpret prompt as: i) optical: synchrotron ii) 0.1-1 MeV: IC (SSC) (and) iii) predict 2nd order IC @ ~100 GeV (there are also differing opinions) Mészáros

  3. 080319b XR O/UV GRB 080318B Mészáros Hei08

  4. GRB 080319B Afterglow WJ NJ Prompt Mészáros

  5. 080319B X-Ray 2-jet fit FS-NJ FS-WJ Mészáros Hei08

  6. 080319B optical 2-jet fit RS-WJ FS-WJ Mészáros Hei08

  7. GRB 080916C Spectrum : simple (~) • “Band” fits (joint GBM/LAT) for all the different time intervals • Soft-to-hard, to ”sort-of-soft- peak-but-hard- slope” afterglow • No evidence for 2nd component Mészáros

  8. BUT: GRB 090902B

  9. Plethora of Models • Radiative e ± ext. shock (Ghisellini et al) • Unmag. adiab. ext. shock (Kumar & Barniol) • Critique thereof (Piran & Nakar) • Klein-Nishina IC ext. shock (Wang, He, ..) • Structured adiab. ext. shock (Corsi et al) • Cocoon int. shock upscattering (Toma et al) • Photosp. int. shock upscattering (Toma et al) • Critique phot & magn. outflow (Zhang, Pe’er) • Hadronic models (Razzaque et al, Asano et al)

  10. Radiative ext. shock model Ghisellini et al, 0910.2459 • GeV light curves roughly F E ~ t -1.5 for most LAT obs. • Spectrum roughly F E ~ E -1 , not strongly evolving • Argue it is external shock, with L~ t -10/7 as expected for `radiative’ f’balls Γ ~r -3 ~t -3/7 • To make ‘radiative’, need `enrich‘ ISM with e ± • Argue pair-dominated f’ball obtained from backscatt. of E>0.5 MeV photons by ext. medium, → cascade • External shock (afterglow) delay: explain GeV from MeV delay (MeV prompt is something else (?)) - Problem: r ≳ 10 15 cm needed, where n ± ≲ n p (e.g. ’01, ApJ 554,660)

  11. Adiabatic unmagn. ext. shock Kumar & Barniol Duran, I, II : arXiv.0905.2417, 0910.5726 • Consider late (>4 s) afterglow at >100 MeV • E>E c , E m (sync.) ⇒ spectrum indep. of Γ , n • F E ~ t -1.2±0.2 ⇒ as adiabatic ext. shock • At t< 4s argue KN significant (Y ≲ 1) • Derive ε B , n from argument that ES at t<50 s should not dominate spectrum at <500 keV (which is unspecified ‘prompt’ emiss.) • → ES params. from >0.1 GeV predict XR, O ✓ • → B’ ~ 0.1G → B ext ~10-70 μ G shock comp. ✓

  12. Adiab. Unmagn. ES (cont.) • Smooth match of unspecified prompt and afterglow considered not implausible (‘natural’) • 080916C: XO → ρ ~r -2 wind , 090902B, 090510 → n~1-10 -3 , 10 -1 -10 -5 • PROBLEMS: • Densities rather low • In SNR shocks have indications for B >> B compr. • Adiabaticity reliant on low n (param. fit assumptions)

  13. Adiab. Unmag. (cont), Barniol-Kumar III, 1003.5916 • Confirm previous, expand a bit (but c.f. Piran-Nakar) • Argue B ext ≲ few 10 μ G enough to accel. e - to γ ★ ~10 8 in a few seconds, such that: ν sy ( γ ★ )~10 GeV, provided Rev.Sho. F pk ≤ 1Jy (for 10 GeV), or ≤ 0.1 Jy (for 1 GeV) • For γ ★ ~10 8 (10 GeV Sy photon) → need 4-5 s acc.time, and γ ~10 7 (1 GeV Sy phot) a bit earlier.

  14. ES Sy shock model critique Piran-Nakar, 1003.5919 • Late photons (E >10 GeV, t > 100 s) cannot arise from ES Synchrotron (from general accel + sy constraints) → must be ≠ process • few mJy IR flux from RS → quench GeV emiss. (by IC), unless B is amplified in shock • If no amplification → need B ext ≥ 100 μ G (adiabatic; (unless n ext very low, n<10 -6 ) - or B higher for radiative • If ES Sy model is true, → no late >10 GeV phot (t>100 s), and → no simult.. < mJy IR flux should be observed -- Other recent ES Sy critique: Zhuo Li, 1004.0791, argue need 5n 05/8 mG <B u <10 2 n 03/8 mG → upstr. preamplification

  15. KN adiabatic ES model (see poster) Wang, He et al, 0911.4189 • KN effects influence IC emission through Y parameter • Calc. Y( γ L ), where ν L (γ L )= 0.1GeV; also calc. Y(γ c ), Y(γ m ) • At t ≲ 10 s, Y( γ L ) ≲ 1 (SSC in KN) → 0.1 GeV is SY (and strong) • but Y(γ c ,γ m ) >> 1 → this SSC is NOT in KN → X, O are low • Y( γ L ) incr. in time (KN gets weaker) → SY GeV gets weaker → Light curve steeper than simple t -1.2 adiab. decay • Early steep LAT decay (SY modif. by SSC w. decr. KN), followed by flatter decay (SY w/o SSC) • Argue Kumar’s late X not steep enough & early LAT too flat , while KN can make LC in LAT & X steeper, as seen

  16. ES shock model: 090510 Corsi, Guetta, Piro, arXiv:0911.4453 • ES: fit LAT, X, O, Γ n ~10 4 , E iso,n ~4x10 53 , ε e ~3x10 -3 , p~2.3, n~10 -6 , θ j,n ~0.12 o • IS: fit GBM, BAT, Γ w~300, E iso,w ~1.7x10 53 , ε e ~3x10 -3 , p~2.7, θ j,w ~0.64 o Or, another IS + ES model: De Pasquale et al ’09, next slide

  17. IS-ES shock model: 090510 De Pasquale + Fermi/Swift team, 2010, ApJ 709:146 • Early LAT and XRT could be due to IS and O rise could be due to onset of simple FS • Or, FS may produce full spectrum from O thru GeV, but temporal behavior → structured jet

  18. A Cocoon + IS Upscattering model of GRB lags, for GRB 080916C Toma, Wu & Mészáros, ApJ 09, 707:1404 cocoon Int. Shock • Assume jet emits synchrotron in optical, and 1st ord SSC is in MeV • Cocoon emits soft XR, jet upscatters this to ~0.3 GeV; time lag ~3s Mészáros

  19. Mészáros

  20. Mészáros

  21. Photon time lags • photon arrival time in different energy bands • GeV band: delayed 2-3 s, due to geometry (source photons come from high latitude cocoon) Mészáros

  22. Cocoon + jet IS Pulse b • L 55= 1.1, Γ 3 =0.93, 1st SSC Δ t j =2.3 s, 2nd SSC γ m =400, γ c =390, τ T =3.5x10 -4, , ε B =10-5, ups-coc ε e =0.4 coc Data: courtesy of Fermi GBM/LAT coll. Mészáros

  23. Photosphere + IS model Toma, Wu, Mészáros, arX:1002.2634 !"#$#%&"'(')*+,)-+$'(+*.)%"#/0)#1)$"')234)5'$ HI$'(+*.)%"#/0 G+$'(+*.)%"#/0 !"#$#%&"'(' E-('F*..)F*%' !"#$#%&"'(-/ Q! ( * 678 9<77 )/: %L+/"(#$(#+ ( &" 678 7><7? )/: @,'&'+,-+A)#+) ( - 678 7;<7= )/: B"'$"'()$"'(')-%) %$'..*()'+C'.#&'D ( ,'/ 678 79 )/: • Photosphere: prompt, variable MeV J"')&"#$#%&"'(-/)':-%%-#+)/*+)+*$K(*..L)&(#C-,')*)"-A") γ <(*L)'11-/-' • IS occur at r ≳ 10 15 cm (high Γ ) : Sy=XR, IC(UP)=GeV

  24. Phot-IS model, cont. !"#$%&'()$&%$"&*+",-)'),+#$(")*.%/,0"(()1%((+,+%2 !0")"("1*&%2,)+2)*0")+2*"&2'(),0%13)%4)*.%)5+6"2),0"((,)1'2)7$,1'**"&) *0"+&)%.2)$0%*%,$0"&+1)"#+,,+%28 90%*%,$0"&+1)$0%*%2,).0+10) 1'2)+2*"&'1*).+*0)*0")+2*"&2'() ,0%13)"("1*&%2, "!#$%& )"44+1+"2*),1'**"&+25)&"5+#" :!0")1',")%4) #!'!71 > )+,)+21(7;";8< '!()*+,-!.*/01234!35!16-!)6313,)6-/27!-82,,2349!'!:;:<=:;<!, !0+,)3+2"#'*+1);"('=)1%7(;)">$('+2)*0")%?,"&6";)0+50/"2"&5=);"('=,)%4) ! ! ,0%&*)@AB,8)C%&)(%25)@AB,D).").+(()$&%$%,")'(*"&2'*+6")">$('2'*+%28

  25. Phot-IS model, cont. !"#$%&$'%()*+,-"./(0#"(-1+(1231(&$"4#'(5#$%(,$)+ 612)(023."+(%#+)('#-(-$7+(2'-#($,,#.'-(-1+()+,#'%$"4(+/2))2#'(&4( -1+(+8+9(*$2")(,"+$-+%(&4(-1+(12319+'+"34($&)#"*-2#'(:$'%(-1+( ,$),$%+(*"#,+));<(=12,1(,#.5%(/$7+(-1+(>?<()4',1"#-"#'<($'%( @@A(+/2))2#'($**+$"($)($(&"#$%(,#/*#'+'-B(6#(%+"2C+($(/#"+(

  26. Phot-IS model, cont. !"#$%&'(#%$)"#)*'&'+,%,&$)-"&).($%(#/%0)1&(23%)45),+($$("# 6"7)1'&8"#)9"'.)&,2("#) :*3"%"$*3,&(/)."+(#'#%; A A: Phot., UP B merged (080916C) 6"7) γ <&'8),--(/(,#/8)&,2("#) :$8#/3&"%&"#<==!)."+(#'#%; B: Phot.. UP distinct (090902B) 53"%"$*3,&(/)F)45)."+(#'#% >).($%(#/%0)1&(23%)45),+($$("#).",$)#"%)#,,.)')$%&"#2)-(#,)%?#(#2)"-)%3,) *38$(/'9)*'&'+,%,&$0)1?%)%3,)'**&"*&('%,)*'&'+,%,&)&'#2,$)'&,)9(+(%,.0) 73(/3)($)/"#$($%,#%)7(%3)%3,)-'/%)%3'%)#"%)'99)%3,)6>@)ABC$)3'D,)').($%(#/%) ! ! 3(23<,#,&28)/"+*"#,#%E

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend