gpu acceleration in early exercise option valuation
play

GPU acceleration in early-exercise option valuation Alvaro Leitao - PowerPoint PPT Presentation

GPU acceleration in early-exercise option valuation Alvaro Leitao and Cornelis W. Oosterlee Financial Mathematics and Supercomputing A Coru na - September 26, 2018 A. Leitao & Kees Oosterlee SGBM on GPU A Coru na - September


  1. GPU acceleration in early-exercise option valuation ´ Alvaro Leitao and Cornelis W. Oosterlee Financial Mathematics and Supercomputing A Coru˜ na - September 26, 2018 ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 1 / 36

  2. Motivation Efficient valuation of early-exercise options. Novel method: combination of successful previous ideas. Originally introduced by Jain and Oosterlee in 2013. Multi-dimensional early-exercise option contracts. Increase the dimensionality. The technique becomes very expensive. Solution: parallelization of the method. GPU computing (GPGPU). ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 2 / 36

  3. Outline Definitions 1 Basket Bermudan Options 2 Stochastic Grid Bundling Method 3 Parallel GPU Implementation 4 Results 5 Conclusions 6 ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 3 / 36

  4. Definitions Option A contract that offers the buyer the right, but not the obligation, to buy (call) or sell (put) a financial asset at an agreed-upon price (the strike price) during a certain period of time or on a specific date (exercise date). Investopedia. Option price The fair value to enter in the option contract. In other words, the (discounted) expected value of the contract. V t = D t E [ f ( S t )] where f is the payoff function, S the underlying asset, t the exercise time and D t the discount factor. ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 4 / 36

  5. Definitions (II) Pricing techniques Stochastic process, S t , governing by a SDE. Simulation: Monte Carlo method. PDEs: Feynman-Kac theorem. Fourier inversion techniques: Characteristic function. Types of options - Exercise time European: End of the contract, t = T . American: Anytime, t ∈ [0 , T ]. Bermudan: Some predefined times, t ∈ { t 1 , . . . , t M } Many others: Asian, barrier, . . . ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 5 / 36

  6. Definitions (III) Early-exercise option price American: V t = sup D t E [ f ( S t )] . t ∈ [0 , T ] Bermudan: V t = sup D t E [ f ( S t )] . t ∈{ t 1 ,..., t M } Pricing early-exercise options PDEs: Hamilton-Jacobi-Bellman equation. Fourier inversion techniques: low dimensions. Simulation: ◮ Least-squares method (LSM), Longstaff and Schwartz. ◮ Stochastic Grid Bundling method (SGBM) [JO15]. ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 6 / 36

  7. Basket Bermudan Options Right to exercise at a set of times: t ∈ { t 0 = 0 , . . . , t m , . . . , t M = T } . d -dimensional underlying process: S t = ( S 1 t , . . . , S d t ) ∈ R d . Driven by a system of SDE in the form: d S 1 t = µ 1 ( S t ) d t + σ 1 ( S t ) d W 1 t , d S 2 t = µ 2 ( S t ) d t + σ 2 ( S t ) d W 2 t , . . . d S d t = µ d ( S t ) d t + σ d ( S t ) d W d t , where W δ t , δ = 1 , 2 , . . . , d , are correlated standard Brownian motions. t and W j The instantaneous correlation coefficient between W i t is ρ i , j . ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 7 / 36

  8. Basket Bermudan Options (II) Intrinsic value of the option: h t := h ( S t ). The value of the option at the terminal time T : V T ( S T ) = f ( S T ) = max( h ( S T ) , 0) . The conditional continuation value Q t m , i.e. the discounted expected payoff at time t m : � � Q t m ( S t m ) = D t m E V t m +1 ( S t m +1 ) | S t m . The Bermudan option value at time t m and state S t m : V t m ( S t m ) = f ( S T ) = max( h ( S t m ) , Q t m ( S t m )) . Value of the option at the initial state S t 0 , i.e. V t 0 ( S t 0 ). ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 8 / 36

  9. Basket Bermudan options scheme Figure: d-dimensional Bermudan option ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 9 / 36

  10. Stochastic Grid Bundling Method Dynamic programming approach. Simulation and regression-based method. Forward in time: Monte Carlo simulation. Backward in time: Early-exercise policy computation. Step I: Generation of stochastic grid points { S t 0 ( n ) , . . . , S t M ( n ) } , n = 1 , . . . , N . Step II: Option value at terminal time t M = T V t M ( S t M ) = max( h ( S t M ) , 0) . ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 10 / 36

  11. Stochastic Grid Bundling Method (II) Backward in time, t m , m ≤ M , : Step III: Bundling into ν non-overlapping sets or partitions B t m − 1 (1) , . . . , B t m − 1 ( ν ) Step IV: Parameterizing the option values Z ( S t m , α β t m ) ≈ V t m ( S t m ) . Step V: Computing the continuation and option values at t m − 1 Q t m − 1 ( S t m − 1 ( n )) = E [ Z ( S t m , α β � t m ) | S t m − 1 ( n )] . The option value is then given by: V t m − 1 ( S t m − 1 ( n )) = max( h ( S t m − 1 ( n )) , � � Q t m − 1 ( S t m − 1 ( n ))) . ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 11 / 36

  12. Bundling Original: Iterative process (K-means clustering). Problems: Too expensive (time and memory) and distribution. New technique: Equal-partitioning. Efficient for parallelization. Two stages: sorting and splitting. SORT SPLIT Figure: Equal partitioning scheme ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 12 / 36

  13. Parametrizing the option value Basis functions φ 1 , φ 2 , . . . , φ K . � � S t m , α β In our case, Z depends on S t m only through φ k ( S t m ): t m � � K � S t m , α β α β Z = t m ( k ) φ k ( S t m ) . t m k =1 Computation of α β α β t m (or � t m ) by least squares regression. The α β t m determines the early-exercise policy. The continuation value: �� K � � � � α β Q t m − 1 ( S t m − 1 ( n )) = D t m − 1 E t m ( k ) φ k ( S t m ) | S t m − 1 � k =1 K � � � α β = D t m − 1 � t m ( k ) E φ k ( S t m ) | S t m − 1 . k =1 ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 13 / 36

  14. Basis functions � � Choosing φ k : the expectations E φ k ( S t m ) | S t m − 1 should be easy to calculate. The intrinsic value of the option, h ( · ) , is usually an important and useful basis function. For example: ◮ Geometric basket Bermudan: � d � 1 � d S δ h ( S t ) = t δ =1 ◮ Arithmetic basket Bermudan: d � h ( S t ) = 1 S δ t m d δ =1 For S t following a GBM: expectations analytically available. ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 14 / 36

  15. Estimating the option value SGBM has been developed as duality-based method . Provide two estimators (confidence interval). Direct estimator (high-biased estimation): � �� � � � � , � V t m − 1 ( S t m − 1 ( n )) = max h S t m − 1 ( n ) Q t m − 1 S t m − 1 ( n ) , N � V t 0 ( S t 0 )] = 1 E [ � � V t 0 ( S t 0 ( n )) . N n =1 Path estimator (low-biased estimation): τ ∗ ( S ( n )) = min { t m : h ( S t m ( n )) ≥ � � Q t m ( S t m ( n )) , m = 1 , . . . , M } , � � v ( n ) = h S � , τ ∗ ( S ( n )) N L � 1 V t 0 ( S t 0 ) = lim v ( n ) . N L N L n =1 ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 15 / 36

  16. SGBM - schematic algorithm Data: S t 0 , X , µ δ , σ δ , ρ i , j , T , N , M Pre-Bundling (only in k-means case). Generation of the grid points (Monte Carlo). Step I. Option value at terminal time t = M . Step II. for Time t = ( M − 1) . . . 1 do Bundling. Step III. for Bundle β = 1 . . . ν do Exercise policy (Regression). Step IV. Continuation value. Step V. Direct estimator. Step V. Generation of the grid points (Monte Carlo). Step I. Option value at terminal time t = M . Step II. for Time t = ( M − 1) . . . 1 do Bundling. Step III. for Bundle β = 1 . . . ν do Continuation value. Step V. Path estimator. Step V. ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 16 / 36

  17. Continuation value computation: new approach More generally applicable. More involved models or options. First discretize, then derive the discrete characteristic function. S 1 tm +1 = S 1 W 1 tm + µ 1 ( S tm )∆ t + σ 1 ( S tm )∆ ˜ tm +1 , S 2 tm +1 = S 2 W 1 W 2 tm + µ 2 ( S tm )∆ t + ρ 1 , 2 σ 2 ( S tm )∆ ˜ tm +1 + L 2 , 2 σ 2 ( S tm )∆ ˜ tm +1 , · · · S d tm +1 = S d W 1 W 2 W d tm + µ d ( S tm )∆ t + ρ 1 , d σ d ( S tm )∆ ˜ tm +1 + L 2 , d σ d ( S tm )∆ ˜ tm +1 + · · · + L d , d σ d ( S tm )∆ ˜ tm +1 , By definition, the d -variate discrete characteristic function:     d iu j S j �  | S tm � u 1 , u 2 , . . . , u d | S tm � = E  exp ψ S tm +1  tm +1  j =1       j d  S j W k � � L k , j ∆ ˜  | S tm = E  exp iu j tm + µ j ( S tm )∆ t + σ j ( S tm )  tm +1   j =1 k =1         d d d � � � S j � � iu j L k , j σ j ( S tm )∆ ˜ W k  · = exp iu j tm + µ j ( S tm )∆ t  E  exp   tm +1    j =1 k =1 j = k       d d d � � � S j � �  ·  , = exp iu j tm + µ j ( S tm )∆ t  ψ N (0 , ∆ t ) u j L k , j σ j ( S tm )    j =1 k =1 j = k ´ A. Leitao & Kees Oosterlee SGBM on GPU A Coru˜ na - September 26, 2018 17 / 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend