givg
play

givg Ya a contradiction vectors This will With - you . Value of - PDF document

- 8 16 : 30 18 : 00 LECTURE - QUANTUM CORRELATIONS Sarkar De basis Calcutta University , Rosen ( EPR Paradox ) 1935 Einstein , Podolsk : - In terms of Bohm 's Spin te Representation 101714 1952 : EPR - Gleason 's


  1. � ⇒ - 8 16 : 30 18 : 00 LECTURE - QUANTUM CORRELATIONS Sarkar De basis Calcutta University , Rosen ( EPR Paradox ) 1935 Einstein , Podolsk : - In terms of Bohm 's Spin te Representation 1017¥14 1952 : EPR - Gleason 's Theorem 1957 : - HVT 's incompatible With Quantum Mechanics 's Paper Local Bell - 1964 : - - { Kochen Stecker ¥3 } { Begin ) Ak= Be for k&l 1968 : Now assume some observable to both sets ) f , ( some common An [ Ak ,AD=[ By ,BD= 0 € ¥% givg Ya a contradiction vectors This will With - you . Value of Be away , Where's the rub ? of Ak value = assumed ) ( ity ! Contextual . contextual . Variables must not be - Hidden non Moral . : common to all these things Gmposite Quantum Systems FKHAOHBQ He 1 × 7/+01923 QK )c is the possibility NDABE one . = IXDQ 19 , ) QKD QHD also Now linearity implies +1 × 27019<7 is legit state Butthis is Entangled in general

  2. � � ⇒ � ENTANGLEMENT = = §w ; QPOPPQPF Then Separable ; If PABE Otherwise Entangled - & F =D ( :-< 1 Wi OEW can be prepared locally Physical Realization � Separable States FOR BIPARTITE PURE STATES from Singular Value Decomposition Theorem one can always ; ; li )aQ IDB that = ?¥n Write this As 1 kayaked other basis ( Schmidt Decomposition ) in ¥ some - = , , t N=1 - Separable Iff But for multipartite states Schmidt Decomposition Can't be done unique - no - Is it Entangled ? Q ) Bipartite Systems : - - How much Entanglement ? If yes a) Entanglement Quantification in terms of Teleportation Protocol � Take Compare states in terms of their Entanglement singlet ( Original Benett Proto d) . . . other initial 100% Exact Teleportation ; But take states inexact teleportation some x ttrms of fidelity wrt target have a 100 ) tbli allowed state D. LOCC like = Suppose we a operation . . . . . Benett Under - al concentration et . . . Xp huffy entangled LOccep0n_oQmf.mcrDent@tm-nCsCsx.D Entangled Schumacher Noiseless Data Compression Theorem Allows the reverse process 'S ( Pa ) pure bipartite state - Easily Entanglement of a Calculable = States ? What about mixed Bipartite Distillable Two Defy 4 Entanglement - states of formation } # for mixed 2) Entanglement

  3. E P ; E ( IYDAB ) EOF HAD inf pure state decompositions Overall = p ⇒ =§P ; lyiapxynitl = nljmannt Distillable Entanglement do o# are hard to But these optimizations A PROPERTIES GOOD MEASURE OF ENTANGLEMENT MUST SATISFY @ Vanishes for Separable State - invariant @ LU Monotone decreasing under 0 LOCC Necessary but desirable @ Additivity , Convexity NOT , Continuity - ( like Six pack abs @ ) EOF is not Result ) ( Recent additive Hastings - Entanglement ( Winter ) One good candidate with all those properties - Squashed t But notoriously hard to calculate ( Winter if ) . NEGATIVITY LOG CONCURRENCE (2 × 2) Easy to Calculate - ÷ $ a¥x to Calculate / EoF= Simple te of Concurrence I NI ~ log = Negativity N ( under Partial Transpose ) Additive but not convex Cplenio ) Mutual Information on Quantum . So Good for Ckegyn Depends Entanglement Squashed . . - - ENTANGLEMENT DETECTION OF - Given PAB is it entangled / separable Prob ? : .

  4. Bdlviolalim -= Entanglement Initially people thought - . But for Werner States plate .lt#)IeifpzHrEntang1edPossibletohavenoBdlViolationevenwithEntamnfpe)ButP707o..7-BellViolation ' k#¥¥O¥iI¥ penetrate detector Ifyouhaveanoperatorwhichistvebutnotcrewdlserveasa t . Banach ) ( e.g. Transpose Operator ) ( Hahn - PPT PABTBI B Faare states Partial on Transpose 20 ieeiaffninoemnredeigenraeue EHAB FA=( } FE Parliairansposeona mutates 't . t Entangled for sure ButdoesPPT ⇒ ? Separable true 2 × 2,2 × 3 - -7 forhigher dimensional states Bound Entangled State False - ( Entangled but not distillable ) Example OFAPPT Entangled State in 3 × 3 systems l°k±'IaH Walks } mnextpmodiauheapsasi " " ' • i ⇒ oe¥± , H ¥610 > Existence of Bound Implies states - Entangled Here But Distillable >0 1. ¥ Bound Entangl EOF ,lqXql ) g=( - . . - ement Entanglement -0 Reduction Criteria Violation Distillable - � Either Separable ) Distillable - '* invariant states -=±+BP+[ states ] where uau Isotropic !¥g± , lv Definite form of rd Entanglement available invariant states -=1+BV[ Werner states ] UQU canbe Bound Criteria hesatisfies Reduction - Entangled

  5. T pABnifyoutind1UDofrank-2and@1paEWfOeDistillab1et7O-0necepyundislillebleHarlialTransposDamilarlyn.cepyundistillabilityTomorrowi-MuHiparliteEntang1ement.N ondassial Entanglement Correlations Beyond

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend