gibbs voronoi tessellations modeling simulation estimation
play

Gibbs Voronoi tessellations: Modeling, Simulation, Estimation. - PowerPoint PPT Presentation

Introduction Definitions Simulation Estimation Theory Gibbs Voronoi tessellations: Modeling, Simulation, Estimation. Frdric Lavancier , Laboratoire Jean Leray, Nantes (France) Work with D. Dereudre (LAMAV, Valenciennes, France). SPA,


  1. Introduction Definitions Simulation Estimation Theory Gibbs Voronoi tessellations: Modeling, Simulation, Estimation. Frédéric Lavancier , Laboratoire Jean Leray, Nantes (France) Work with D. Dereudre (LAMAV, Valenciennes, France). SPA, Berlin, July 27-31, 2009.

  2. Introduction Definitions Simulation Estimation Theory Introduction Voronoï tessellations : applications in Astronomy, Biology, Physics, etc.

  3. Introduction Definitions Simulation Estimation Theory Introduction Voronoï tessellations : applications in Astronomy, Biology, Physics, etc. Studied as a random object : based on Poisson point Processes.

  4. Introduction Definitions Simulation Estimation Theory Introduction Voronoï tessellations : applications in Astronomy, Biology, Physics, etc. Studied as a random object : based on Poisson point Processes.

  5. Introduction Definitions Simulation Estimation Theory Introduction Voronoï tessellations : applications in Astronomy, Biology, Physics, etc. Studied as a random object : based on Poisson point Processes. Drawback : Strong independent structures coming from the Poisson process

  6. Introduction Definitions Simulation Estimation Theory Introduction Voronoï tessellations : applications in Astronomy, Biology, Physics, etc. Studied as a random object : based on Poisson point Processes. Drawback : Strong independent structures coming from the Poisson process − → Interactions between the cells ?

  7. Introduction Definitions Simulation Estimation Theory Introduction One solution : Gibbs modifications of Poisson Voronoï tessellations.

  8. Introduction Definitions Simulation Estimation Theory Introduction One solution : Gibbs modifications of Poisson Voronoï tessellations. Questions : What kind of interactions ?

  9. Introduction Definitions Simulation Estimation Theory Introduction One solution : Gibbs modifications of Poisson Voronoï tessellations. Questions : What kind of interactions ? − → Smooth interaction.

  10. Introduction Definitions Simulation Estimation Theory Introduction One solution : Gibbs modifications of Poisson Voronoï tessellations. Questions : What kind of interactions ? − → Smooth interaction. − → Hardcore interaction (some Voronoi tessellations are forbidden)

  11. Introduction Definitions Simulation Estimation Theory Introduction One solution : Gibbs modifications of Poisson Voronoï tessellations. Questions : What kind of interactions ? − → Smooth interaction. − → Hardcore interaction (some Voronoi tessellations are forbidden) Existence of models.

  12. Introduction Definitions Simulation Estimation Theory Introduction One solution : Gibbs modifications of Poisson Voronoï tessellations. Questions : What kind of interactions ? − → Smooth interaction. − → Hardcore interaction (some Voronoi tessellations are forbidden) Existence of models. Unicity of Gibbs measures.

  13. Introduction Definitions Simulation Estimation Theory Introduction One solution : Gibbs modifications of Poisson Voronoï tessellations. Questions : What kind of interactions ? − → Smooth interaction. − → Hardcore interaction (some Voronoi tessellations are forbidden) Existence of models. Unicity of Gibbs measures. Simulations.

  14. Introduction Definitions Simulation Estimation Theory Introduction One solution : Gibbs modifications of Poisson Voronoï tessellations. Questions : What kind of interactions ? − → Smooth interaction. − → Hardcore interaction (some Voronoi tessellations are forbidden) Existence of models. Unicity of Gibbs measures. Simulations. Parametric estimations.

  15. Introduction Definitions Simulation Estimation Theory 2 Definitions

  16. Introduction Definitions Simulation Estimation Theory Notations B ( R 2 ) denotes the space of bounded sets in R 2 .

  17. Introduction Definitions Simulation Estimation Theory Notations B ( R 2 ) denotes the space of bounded sets in R 2 . M ( R 2 ) is the space of locally finite point configurations γ in R 2 : γ ⊂ R 2 , such that for all Λ ∈ B ( R 2 ) , card ( γ ∩ Λ) < ∞ .

  18. Introduction Definitions Simulation Estimation Theory Notations B ( R 2 ) denotes the space of bounded sets in R 2 . M ( R 2 ) is the space of locally finite point configurations γ in R 2 : γ ⊂ R 2 , such that for all Λ ∈ B ( R 2 ) , card ( γ ∩ Λ) < ∞ . γ Λ is the restriction of γ on Λ : γ Λ = γ ∩ Λ .

  19. Introduction Definitions Simulation Estimation Theory Notations B ( R 2 ) denotes the space of bounded sets in R 2 . M ( R 2 ) is the space of locally finite point configurations γ in R 2 : γ ⊂ R 2 , such that for all Λ ∈ B ( R 2 ) , card ( γ ∩ Λ) < ∞ . γ Λ is the restriction of γ on Λ : γ Λ = γ ∩ Λ . Vor ( γ ) : Voronoï tessellation coming from γ

  20. Introduction Definitions Simulation Estimation Theory Notations B ( R 2 ) denotes the space of bounded sets in R 2 . M ( R 2 ) is the space of locally finite point configurations γ in R 2 : γ ⊂ R 2 , such that for all Λ ∈ B ( R 2 ) , card ( γ ∩ Λ) < ∞ . γ Λ is the restriction of γ on Λ : γ Λ = γ ∩ Λ . Vor ( γ ) : Voronoï tessellation coming from γ λ is the Lebesgue measure on R 2 .

  21. Introduction Definitions Simulation Estimation Theory Notations B ( R 2 ) denotes the space of bounded sets in R 2 . M ( R 2 ) is the space of locally finite point configurations γ in R 2 : γ ⊂ R 2 , such that for all Λ ∈ B ( R 2 ) , card ( γ ∩ Λ) < ∞ . γ Λ is the restriction of γ on Λ : γ Λ = γ ∩ Λ . Vor ( γ ) : Voronoï tessellation coming from γ λ is the Lebesgue measure on R 2 . For z > 0 , π z : Poisson point process with intensity zλ

  22. Introduction Definitions Simulation Estimation Theory Notations B ( R 2 ) denotes the space of bounded sets in R 2 . M ( R 2 ) is the space of locally finite point configurations γ in R 2 : γ ⊂ R 2 , such that for all Λ ∈ B ( R 2 ) , card ( γ ∩ Λ) < ∞ . γ Λ is the restriction of γ on Λ : γ Λ = γ ∩ Λ . Vor ( γ ) : Voronoï tessellation coming from γ λ is the Lebesgue measure on R 2 . For z > 0 , π z : Poisson point process with intensity zλ Λ : π z restricted on Λ . π z

  23. Introduction Definitions Simulation Estimation Theory Gibbs measures Let ( H Λ ) Λ ∈B ( R 2 ) be a family of energies M (Λ) × M (Λ c ) H Λ : − → R ∪ { + ∞} ( γ Λ , γ Λ c ) �− → H Λ ( γ Λ | γ Λ c ) We suppose that it is compatible. For every Λ ⊂ Λ ′ H Λ ′ ( γ Λ ′ | γ Λ ′ c ) = H Λ ( γ Λ | γ Λ c ) + ϕ Λ , Λ ′ ( γ Λ c ) .

  24. Introduction Definitions Simulation Estimation Theory Gibbs measures Let ( H Λ ) Λ ∈B ( R 2 ) be a family of energies M (Λ) × M (Λ c ) H Λ : − → R ∪ { + ∞} ( γ Λ , γ Λ c ) �− → H Λ ( γ Λ | γ Λ c ) We suppose that it is compatible. For every Λ ⊂ Λ ′ H Λ ′ ( γ Λ ′ | γ Λ ′ c ) = H Λ ( γ Λ | γ Λ c ) + ϕ Λ , Λ ′ ( γ Λ c ) . Definition A probability measure P on M ( R 2 ) is a Gibbs measure for z > 0 and ( H Λ ) if for every Λ ∈ B ( R 2 ) and P -almost every γ Λ c 1 Z Λ ( γ Λ c ) e − H Λ ( γ Λ | γ Λ c ) π z P ( dγ Λ | γ Λ c ) = Λ ( dγ Λ ) , e − H Λ ( γ ′ Λ | γ Λ c ) π Λ ( dγ ′ � where Z Λ ( γ Λ c ) = Λ ) .

  25. Introduction Definitions Simulation Estimation Theory A typical energy of a Voronoï tessellation : � � V 2 ( C, C ′ ) . H Λ ( γ Λ | γ Λ c ) = V 1 ( C ) + C ∈ Vor ( γ ) C,C ′ ∈ Vor ( γ ) C ∩ Λ � = ∅ C and C ′ are neighbors ( C ∪ C ′ ) ∩ Λ � = ∅

  26. Introduction Definitions Simulation Estimation Theory A typical energy of a Voronoï tessellation : � � V 2 ( C, C ′ ) . H Λ ( γ Λ | γ Λ c ) = V 1 ( C ) + C ∈ Vor ( γ ) C,C ′ ∈ Vor ( γ ) C ∩ Λ � = ∅ C and C ′ are neighbors ( C ∪ C ′ ) ∩ Λ � = ∅ Our guiding example : C  + ∞ if h min ( C ) ≤ ε  x  + ∞ if h max ( C ) ≥ α  h max V 1 ( C ) = if h 2 + ∞ max ( C ) / V ol ( C ) ≥ B h min   0 otherwise  √ 0 < ε < α , B > 1 / 2 3 ;

  27. Introduction Definitions Simulation Estimation Theory A typical energy of a Voronoï tessellation : � � V 2 ( C, C ′ ) . H Λ ( γ Λ | γ Λ c ) = V 1 ( C ) + C ∈ Vor ( γ ) C,C ′ ∈ Vor ( γ ) C ∩ Λ � = ∅ C and C ′ are neighbors ( C ∪ C ′ ) ∩ Λ � = ∅ Our guiding example : C  + ∞ if h min ( C ) ≤ ε  x  + ∞ if h max ( C ) ≥ α  h max V 1 ( C ) = if h 2 + ∞ max ( C ) / V ol ( C ) ≥ B h min   0 otherwise  √ 0 < ε < α , B > 1 / 2 3 ; � 1 � max( V ol ( C ) , V ol ( C ′ )) 2 V 2 ( C, C ′ ) = θ min( V ol ( C ) , V ol ( C ′ )) − 1 , θ ∈ R

  28. Introduction Definitions Simulation Estimation Theory Existence results First existence results (bounded interactions) : Bertin, Billiot and Drouilhet, : 1) Existence of nearest-neighbors spatial Gibbs models , Adv. Appl. Prob. (SGSA) (1999) 31, 895-909. 2) Existence of Delaunay pairwise Gibbs point process with superstable component , J. Stat. phys. (1999) Vol 95 3/4 719-744.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend