generalized techniques in numerical integration
play

Generalized Techniques in Numerical Integration Richard M. - PowerPoint PPT Presentation

Generalized Techniques in Numerical Integration Richard M. Slevinsky and Hassan Safouhi Mathematical Section Campus Saint-Jean, University of Alberta hassan.safouhi@ualberta.ca http://www.csj.ualberta.ca/safouhi Approximation and


  1. Generalized Techniques in Numerical Integration Richard M. Slevinsky and Hassan Safouhi Mathematical Section Campus Saint-Jean, University of Alberta hassan.safouhi@ualberta.ca http://www.csj.ualberta.ca/safouhi Approximation and Extrapolation of Convergent and Divergent Sequences and Series CIRM Luminy September 28 – October 2, 2009 Generalized Techniques in Numerical Integration. – p. 1/29

  2. The Plan Introduction A Mathematical Tool Formulae for Higher Order Derivatives PART I – Ongoing Research The general Idea Example of Applications and Numerical Results PART II – Almost Completed An Algorithm for the G (1) Transformation n Computing the Incomplete Bessel Functions Generalized Techniques in Numerical Integration. – p. 2/29

  3. Introduction The Euler series arising from integrating the Euler integral by parts: � ∞ � ∞ � ∞ e − t e − x e − t ( − 1) l l ! x l + ( − 1) n n ! t d t = t n +1 d t x x x l =0 � ∞ e − x ( − 1) l l ! ∼ x → ∞ . x l , x l =0 Integration by parts by x d x led to: � d � λ � sin( x ) � � ∞ � ∞ g ( x ) ( − 1) λ x λ g ( x ) j λ ( x ) d x = d x x d x x 0 0 � � d � λ � sin( x ) � � ∞ � x λ − 1 g ( x ) = ( − 1) λ x d x. x d x x 0 Generalized Techniques in Numerical Integration. – p. 3/29

  4. Introduction �� � � d � λ − 1 � sin( x ) � ∞ ( − 1) λ � � x λ − 1 g ( x ) = � x d x x � 0 � d � � � � d � λ − 1 � sin( x ) � � ∞ x λ − 1 g ( x ) + ( − 1) λ − 1 x d x x d x x d x x 0 �� � d � � d � l � � λ − 1 − l � sin( x ) � ∞ λ − 1 � � x λ − 1 g ( x ) ( − 1) λ + l = � � x d x x d x x l =0 0 � d � λ � � � sin( x ) � � ∞ x λ − 1 g ( x ) + x d x. x d x x 0 Leading at: �� d �� � λ � � ∞ � ∞ 1 x λ − 1 g ( x ) g ( x ) j λ ( v x ) d x = sin( v x ) d x. v λ +1 x d x 0 0 Generalized Techniques in Numerical Integration. – p. 4/29

  5. Introduction Semi-infinite spherical Bessel integrals in molecular integrals: ˆ n k n + 1 2 [ R γ ( s, x )] � 2 ( z ) = z n ( n + j )! 1 ˆ g ( x ) = x n x , k n + 1 [ γ ( s, x )] n γ e z (2 z ) j j !( n − j )! j =0 � (1 − s ) ζ 2 i + sζ 2 j + s (1 − s ) x 2 . s ∈ [0 , 1] . γ ( s, x ) = 40 0.04 0.04 Integrand with spherical Bessel Integrand with spherical Bessel Integrand with sine function 0.03 0.03 30 0.02 0.02 20 0.01 0.01 0 0 10 -0.01 -0.01 0 -0.02 -0.02 -0.03 -0.03 -10 -0.04 -0.04 -20 �� 0 0 2 2 4 4 6 6 8 8 10 10 0 0.5 1 1.5 2 2.5 3 3.5 4 � b f ( x ) d x ? How can we use this technique for any a Generalized Techniques in Numerical Integration. – p. 5/29

  6. Higher Order Derivatives Let us determine the k th derivatives of G 1 ( x ) = x 3 f ( x 2 ) : � d � G 1 ( x ) = 3 x 2 f ( x 2 ) + 2 x 4 f ′ ( x 2 ) . d x � d � 2 G 1 ( x ) = 6 x f ( x 2 ) + (6 x 3 + 8 x 3 ) f ′ ( x 2 ) + 4 x 5 f ′′ ( x 2 ) . d x How about this: � d � d � � k ( x − 3 G 1 ( x )) = 2 k f ( k ) ( x 2 ) . ( x − 3 G 1 ( x )) = 2 f ′ ( x 2 ) = ⇒ x d x x d x � � k d For G 2 ( x ) = x 2 f (ln( x )) : ( x − 2 G 2 ( x )) = f ( k ) (ln( x )) . x − 1 d x � d � k � � i d ( x − n G ( x )) for G ( x ) in terms of Can we express x m d x d x i = 0 , 1 , ..., k ? Generalized Techniques in Numerical Integration. – p. 6/29

  7. Higher Order Derivatives The Slevinsky-Safouhi formulae [Slevinsky and Safouhi, 2009]: � � k d ( x − n G ( x )) Theorem Let G ( x ) be k th differentiable with x m d x well-defined. The Slevinsky-Safouhi formula I for ( α, β, m, n ) is given by: � � k � � i k � d d ( x − β G ( x ))= A i k x n − β + i ( m +1) − k ( α +1) ( x − n G ( x )) , x α d x x m d x i =0 with coefficients [ N = ( n − β − ( k − 1)( α + 1)) ]:   1 i = k for  A i N A 0 k = i = 0 , k > 0 for k − 1   k − 1 + A i − 1 ( N + i ( m + 1)) A i 0 < i < k. for k − 1 i ( − 1) i − j ( n − β + j ( m + 1) − ( k − 1)( α + 1)) k,α +1 � A i k = , m � = − 1 . ( m + 1) i j ! ( i − j )! j =0 The Slevinsky-Safouhi formula II: ( α, β, m, n ) = (0 , 0 , 1 , 0) . Generalized Techniques in Numerical Integration. – p. 7/29

  8. Part I The Generalized S n Transformation & The Staircase Algorithm Generalized Techniques in Numerical Integration. – p. 8/29

  9. The generalized S n � b Let f ( x ) be integrable on [ a, b ] , i.e. a f ( x ) d x exists. We write: � b � b f ( x ) d x = G 0 ( x ) H 0 ( x ) w ( x ) d x, a a for some weight function w ( x ) , whose choice depends on f ( x ) . � b If f ( x ) ∈ C n [ a, b ] , then a f ( x ) d x has the equivalent representation, which we obtain after n integration by parts by w ( x ) d x : � � b � b n − 1 � b � � f ( x ) d x = G l ( x ) H l + 1 ( x ) + G n ( x ) H n ( x ) w ( x ) d x � a a a l = 0 � � l � � − l where: d d G l ( x ) = ( − 1) l g ( x ) H l ( x ) = h ( x ) . and w ( x ) d x w ( x ) d x Generalized Techniques in Numerical Integration. – p. 9/29

  10. The Staircase Algorithm � b f ( x ) d x take the following form: Approximations to a � x 0 For a < x 0 < b , initialize: S 0 = G 0 ( x ) H 0 ( x ) w ( x ) d x, a � � b � b b � � G 0 ( x ) H 0 ( x ) w ( x ) d x = G 0 ( x ) H 1 ( x ) + G 1 ( x ) H 1 ( x ) w ( x ) d x. � x 0 x 0 x 0 � � x 1 b � � S 1 = S 0 + G 0 ( x ) H 1 ( x ) + G 1 ( x ) H 1 ( x ) w ( x ) d x, x 0 < x 1 < b. � x 0 x 0 For the sequence { x l } n l =1 satisfying a < x l − 1 < x l < b , define: � � x l b � � S l = S l − 1 + G l − 1 ( x ) H l ( x ) + G l ( x ) H l ( x ) w ( x ) d x. � x l − 1 x l − 1 � b f ( x ) d x form the sequence { S l } n The approximations to l =0 . a Generalized Techniques in Numerical Integration. – p. 10/29

  11. Bessel Integral The integral that follows appeared in Numerical Recipes: � b x I 1 = x 2 + 1 J 0 ( x ) d x = K 0 (1) . 0 1 By choosing w ( x ) = x , we have G 0 ( x ) = x 2 + 1 and H 0 ( x ) = J 0 ( x ) . 2 l l ! H l ( x ) = x l J l ( x ) . → ֒ G l ( x ) = and ( x 2 + 1) l +1 The integral then has the equivalent representations: � � ∞ n − 1 − 2 l l ! x l + 1 � x n + 1 � ∞ + 2 n n ! � I 1 = ( x 2 + 1 ) l + 1 J l + 1 ( x ) ( x 2 + 1 ) n + 1 J n ( x ) d x � a 0 l = 0 All the boundary terms vanish and consequently: � ∞ � ∞ x n +1 x x 2 + 1 J 0 ( x ) d x = 2 n n ! ( x 2 + 1) n +1 J n ( x ) d x = K 0 (1) . 0 0 Generalized Techniques in Numerical Integration. – p. 11/29

  12. Bessel Integral - Results Table 1: I 1 = 0 . 421024438240708 . x l = 2 π ( l + 1) . ¯ ¯ l S l l S l 0 0.414 193 276 771 795 7 0.421 024 438 053 642 1 0.421 696 746 593 657 8 0.421 024 438 183 915 2 0.421 072 353 906 909 9 0.421 024 438 241 771 3 0.421 020 653 966 770 10 0.421 024 438 241 364 4 0.421 023 974 243 269 11 0.421 024 438 240 707 5 0.421 024 464 857 404 12 0.421 024 438 240 700 6 0.421 024 443 256 394 13 0.421 024 438 240 708 Generalized Techniques in Numerical Integration. – p. 12/29

  13. Fresnel Integrals The integrals are given by: � ∞ � ∞ ˜ sin( v x 2 ) d x cos( v x 2 ) d x. I 2 ( a, v ) = I 2 ( a, v ) = and a a By choosing w ( x ) = x , we have G 0 ( x ) = 1 x and H 0 ( x ) = sin( v x 2 ) . H l ( x ) = sin( v x 2 − lπ/ 2) (2 l )! → ֒ G l ( x ) = . and 2 l l ! x 2 l +1 (2 v ) l The integral I 2 ( a, v ) then has the equivalent representations: � � ∞ sin( vx 2 − ( l + 1 ) π � sin( vx 2 − n π n − 1 � ) 2 ) − 2 ( 2l )! ( 2n )! � 2 + d x � ( 4v ) l + 1 l ! x 2l + 1 ( 4v ) n n ! x 2n � a l = 0 a Generalized Techniques in Numerical Integration. – p. 13/29

  14. Fresnel Integrals - Results � Table 2: I 2 (0 , 1) = . 626657068657750 . x l = 2 π ( l + 1) /v . ¯ ¯ l S l l S l 0 0.629 878 864 869 732 7 0.626 657 068 644 466 1 0.627 294 419 199 049 8 0.626 657 068 657 872 2 0.626 651 451 723 302 9 0.626 657 068 657 790 3 0.626 655 488 072 699 10 0.626 657 068 657 749 4 0.626 657 083 038 776 11 0.626 657 068 657 749 5 0.626 657 073 115 469 12 0.626 657 068 657 750 6 0.626 657 068 616 796 The integral ˜ I 2 ( a, v ) then has the equivalent representations: � � ∞ cos( v x 2 − ( l + 1 ) π � cos( vx 2 − n π n − 1 � ) 2 ) − 2 ( 2l )! ( 2n )! � 2 + d x � ( 4v ) l + 1 l ! x 2l + 1 ( 4v ) n n ! x 2n � a l = 0 a Generalized Techniques in Numerical Integration. – p. 14/29

  15. The Twisted Tail The integral is proposed in the book " The SIAM 100-Digit Challenge ": � 1 � ∞ � � t − 1 cos t − 1 ln( t ) cos( x e x ) d x, I 3 = ( x = − ln( t )) . d t = 0 0 1 w ( x ) = (1 + x ) e x ֒ (1 + x ) e x and H 0 ( x ) = cos( x e x ) . → G 0 ( x ) = � � l � � − d 1 x e x − lπ ֒ → G l ( x )= (1 + x ) e x and H l ( x ) = cos . (1 + x ) e x d x 2  The general form of G l ( x ) is:  p 0 ( x ) = 1      p 1 ( x ) = 2 + x  e − ( l +1) x 9 + 8 x + 2 x 2 G l ( x ) = (1 + x ) 2 l +1 p l ( x ) p 2 ( x ) =   64 + 79 x + 36 x 2 + 6 x 3  p 3 ( x ) =    . . .  . . . . . . Generalized Techniques in Numerical Integration. – p. 15/29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend