generalized bmo spaces on riemannian manifolds
play

Generalized BMO spaces on Riemannian manifolds G. Mauceri 1 S. Meda - PowerPoint PPT Presentation

Generalized BMO spaces on Riemannian manifolds G. Mauceri 1 S. Meda 2 M. Vallarino 3 1 Dipartimento di Matematica Universit di Genova 2 Dipartimento di Matematica Universit di Milano Bicocca 3 Dipartimento di Matematica Politecnico di Torino


  1. Generalized BMO spaces on Riemannian manifolds G. Mauceri 1 S. Meda 2 M. Vallarino 3 1 Dipartimento di Matematica Università di Genova 2 Dipartimento di Matematica Università di Milano Bicocca 3 Dipartimento di Matematica Politecnico di Torino XXXIII Convegno Nazionale di Analisi Armonica Alba, 17-20 Giugno 2013

  2. The classical H 1 − BMO theory ( X , d ,µ ) doubling metric measure space     H 1 ( X ) = � � � < ∞ � �  f = λ j a j : a j CW-atoms , � λ j  j j a is a CW-atom iff s uppa ⊂ B ◮ � a � 2 ≤ µ ( B ) − 1 / 2 ◮ � a d µ = 0 . ◮

  3. The classical H 1 − BMO theory ( X , d ,µ ) doubling metric measure space     H 1 ( X ) = � � � < ∞ � �  f = λ j a j : a j CW-atoms , � λ j  j j a is a CW-atom iff s uppa ⊂ B ◮ � a � 2 ≤ µ ( B ) − 1 / 2 ◮ � a d µ = 0 . ◮ � � � � � f � H 1 = inf � λ j � , f = λ j a j . j j

  4. The classical H 1 − BMO theory BMO ( X ) is the space of functions f such that � 1 / 2 � 1 � | f ( x ) − c | 2 d µ ( x ) � f � BMO = sup inf µ ( B ) c ∈ C B B

  5. The classical H 1 − BMO theory BMO ( X ) is the space of functions f such that � 1 / 2 � 1 � | f ( x ) − c | 2 d µ ( x ) � f � BMO = sup inf µ ( B ) c ∈ C B B µ ( B ) − 1 / 2 � π B ( f ) � L 2 ( B ) = sup B π B : ⊥ projection on the orthogonal of constants in L 2 ( B ) .

  6. The classical H 1 − BMO theory H 1 ( X ) ∗ = BMO ( X ) ◮ CZO ′ s : H 1 ( X ) → L 1 ( X ) , L ∞ ( X ) → BMO ( X ) ◮ [ H 1 ( X ) , BMO ( X )] θ = L p ( X ) , θ = 1 − 1 / p ◮

  7. The classical H 1 − BMO theory H 1 ( X ) ∗ = BMO ( X ) ◮ CZO ′ s : H 1 ( X ) → L 1 ( X ) , L ∞ ( X ) → BMO ( X ) ◮ [ H 1 ( X ) , BMO ( X )] θ = L p ( X ) , θ = 1 − 1 / p ◮ Y Banach space, T linear operator. If ◮ � Ta � Y ≤ C ∀ a CW-atoms then � T � H 1 →Y ≤ C . [Meda, Sjögren,Vallarino]

  8. Riemannian manifolds ( M , g ) noncompact, complete Riemannian manifold � d µ ( x ) = det g ( x ) d x Riemannian measure L = − divgrad Laplace-Beltrami operator

  9. Riemannian manifolds ( M , g ) noncompact, complete Riemannian manifold � d µ ( x ) = det g ( x ) d x Riemannian measure L = − divgrad Laplace-Beltrami operator Natural singular integrals on M ◮ Riesz transforms: ∇ L − 1 / 2 , ∇ k L − k / 2 ◮ spectral multipliers: m ( L ) , L iu , u ∈ R

  10. Riemannian manifolds ( M , g ) noncompact, complete Riemannian manifold � d µ ( x ) = det g ( x ) d x Riemannian measure L = − divgrad Laplace-Beltrami operator Natural singular integrals on M ◮ Riesz transforms: ∇ L − 1 / 2 , ∇ k L − k / 2 ◮ spectral multipliers: m ( L ) , L iu , u ∈ R Develop an analogue of the H 1 − BMO theory on M providing end-point estimates for ∇ k L − k / 2 , m ( L ) .

  11. Previous results ( M , g ,µ ) doubling ◮ [Russ], [Marias, Russ] ◮ [Auscher, McIntosh, Russ]

  12. Previous results ( M , g ,µ ) doubling ◮ [Russ], [Marias, Russ] ◮ [Auscher, McIntosh, Russ] ( M , g ,µ ) non-doubling: local Hardy spaces ◮ [Taylor] ◮ [Carbonaro, McIntosh, Morris] Endpoint estimates for s. i. operator that have only local singularities. But ∇ k L − k / 2 , L iu are singular also at ∞ .

  13. Previous results ( M , g ,µ ) doubling ◮ [Russ], [Marias, Russ] ◮ [Auscher, McIntosh, Russ] ( M , g ,µ ) non-doubling: local Hardy spaces ◮ [Taylor] ◮ [Carbonaro, McIntosh, Morris] Endpoint estimates for s. i. operator that have only local singularities. But ∇ k L − k / 2 , L iu are singular also at ∞ . ( M , g ,µ ) non-doubling: global Hardy spaces ◮ [GM, Meda, Vallarino]

  14. A class of nondoubling manifolds We assume M has bounded geometry ◮ inj M > 0 , Ric M bounded below M has spectral gap b = inf σ 2 ( L ) > 0 ◮ ( M , g ,µ ) is locally doubling but not globally doubling.

  15. A class of nondoubling manifolds We assume M has bounded geometry ◮ inj M > 0 , Ric M bounded below M has spectral gap b = inf σ 2 ( L ) > 0 ◮ ( M , g ,µ ) is locally doubling but not globally doubling. Examples ◮ noncompact semisimple Lie groups with finite centre and any invariant metric ◮ noncompact symmetric spaces with Killing metric ◮ Damek-Ricci spaces ◮ Cartan-Hadamard manifolds with spectral gap.

  16. The space H 1 A function a ∈ A s (atoms at scale s ) if (1) s uppa ⊂ B , r B < s (2) � a � 2 ≤ µ ( B ) − 1 / 2 � (3) a d µ = 0 . � � H 1 � < ∞ � � s ( M ) = f = � j λ j a , a j ∈ A s , � � λ j j     � : f = � � � � � f � H 1 s = inf � λ j λ j a , a j ∈ A s  j j  [Russ], [Carbonaro, M, Meda]

  17. Properties of H 1 Main properties [Carbonaro, M, Meda] H 1 s 1 ( M ) = H 1 s 2 ( M ) , � f � H 1 s 1 ≈ � f � H 1 ◮ s 2 s 0 = 1 Henceforth H 1 ( M ) = H 1 s 0 ( M ) , 2 inj M [ H 1 ( M ) , L 2 ( M )] θ = L p ( M ) , θ = 2 ( 1 − 1 / p ) ◮

  18. Properties of H 1 Main properties [Carbonaro, M, Meda] H 1 s 1 ( M ) = H 1 s 2 ( M ) , � f � H 1 s 1 ≈ � f � H 1 ◮ s 2 s 0 = 1 Henceforth H 1 ( M ) = H 1 s 0 ( M ) , 2 inj M [ H 1 ( M ) , L 2 ( M )] θ = L p ( M ) , θ = 2 ( 1 − 1 / p ) ◮ However L iu and ∇ L − 1 / 2 do not map H 1 ( M ) → L 1 ( M ) More cancellation is needed

  19. Special atoms and the space X 1 ( M ) Quasiharmonic functions q ( M ) = { u ∈ C ∞ ( M ) : Lu = const in M } � � q 2 ( B ) = u ∈ L 2 ( B ) : Lu = const in B q 2 ( B ) = � � u : Lu = const in a ngbhd of B q ( M ) ⊂ q 2 ( B ) ⊂ q 2 ( B )

  20. Special atoms and the space X 1 ( M ) Quasiharmonic functions q ( M ) = { u ∈ C ∞ ( M ) : Lu = const in M } � � q 2 ( B ) = u ∈ L 2 ( B ) : Lu = const in B q 2 ( B ) = � � u : Lu = const in a ngbhd of B q ( M ) ⊂ q 2 ( B ) ⊂ q 2 ( B ) A function A ∈ SA s (special atoms at scale s ) if (1) s uppA ⊂ B , r B < s (2) � A � 2 ≤ µ ( B ) − 1 / 2 ∀ u ∈ q 2 ( B ) . � (3) Au d µ = 0

  21. Special atoms and the space X 1 ( M ) Quasiharmonic functions q ( M ) = { u ∈ C ∞ ( M ) : Lu = const in M } � � q 2 ( B ) = u ∈ L 2 ( B ) : Lu = const in B q 2 ( B ) = � � u : Lu = const in a ngbhd of B q ( M ) ⊂ q 2 ( B ) ⊂ q 2 ( B ) A function A ∈ SA s (special atoms at scale s ) if (1) s uppA ⊂ B , r B < s (2) � A � 2 ≤ µ ( B ) − 1 / 2 ∀ u ∈ q 2 ( B ) . � (3) Au d µ = 0 If B has no “holes" and ∂ B is smooth then (3) is equivalent to � (3’) Au d µ = 0 ∀ u ∈ q ( M ) . ∀ u ∈ q 2 ( B ) � (3”) Au d µ = 0 True if s ≤ s 0 = 1 2 inj M .

  22. The space X 1 � � � < ∞ X 1 � � s = f = � j λ j A , A j ∈ SA s , � � λ j j     � : f = � � � � � f � X 1 s = inf � λ j λ j A , A j ∈ SA s  j j 

  23. The space X 1 � � � < ∞ X 1 � � s = f = � j λ j A , A j ∈ SA s , � � λ j j     � : f = � � � � � f � X 1 s = inf � λ j λ j A , A j ∈ SA s  j j  Main properties [M, Meda, Vallarino] U = L ( σ I + L ) − 1 : H 1 → X 1 is an isomorphism for all s > 0 ◮ s and σ large enough (hard work!).

  24. The space X 1 � � � < ∞ X 1 � � s = f = � j λ j A , A j ∈ SA s , � � λ j j     � : f = � � � � � f � X 1 s = inf � λ j λ j A , A j ∈ SA s  j j  Main properties [M, Meda, Vallarino] U = L ( σ I + L ) − 1 : H 1 → X 1 is an isomorphism for all s > 0 ◮ s and σ large enough (hard work!). X 1 s 1 = X 1 s 2 , � f � X 1 s 1 ≈ � f � X 1 ◮ s 2 Henceforth X 1 = X 1 s 0 = 1 s 0 , 2 inj M

  25. The space X 1 � � � < ∞ X 1 � � s = f = � j λ j A , A j ∈ SA s , � � λ j j     � : f = � � � � � f � X 1 s = inf � λ j λ j A , A j ∈ SA s  j j  Main properties [M, Meda, Vallarino] U = L ( σ I + L ) − 1 : H 1 → X 1 is an isomorphism for all s > 0 ◮ s and σ large enough (hard work!). X 1 s 1 = X 1 s 2 , � f � X 1 s 1 ≈ � f � X 1 ◮ s 2 Henceforth X 1 = X 1 s 0 = 1 s 0 , 2 inj M [ X 1 , L 2 ( M )] θ = L p ( M ) , θ = 2 ( 1 − 1 / p ) ◮

  26. The space X 1 � � � < ∞ X 1 � � s = f = � j λ j A , A j ∈ SA s , � � λ j j     � : f = � � � � � f � X 1 s = inf � λ j λ j A , A j ∈ SA s  j j  Main properties [M, Meda, Vallarino] U = L ( σ I + L ) − 1 : H 1 → X 1 is an isomorphism for all s > 0 ◮ s and σ large enough (hard work!). X 1 s 1 = X 1 s 2 , � f � X 1 s 1 ≈ � f � X 1 ◮ s 2 Henceforth X 1 = X 1 s 0 = 1 s 0 , 2 inj M [ X 1 , L 2 ( M )] θ = L p ( M ) , θ = 2 ( 1 − 1 / p ) ◮ ◮ If T = ∇ L − 1 / 2 , L iu then � TA � 1 ≤ C ∀ A ∈ SA s .

  27. The space X 1 fin ( M ) QUESTION: Suppose Y Banach, T linear s. t. (UBA) � T A � Y ≤ C ∀ A ∈ SA s . Does T : X 1 ( M ) → Y boundedly? NOT OBVIOUS!

  28. The space X 1 fin ( M ) QUESTION: Suppose Y Banach, T linear s. t. (UBA) � T A � Y ≤ C ∀ A ∈ SA s . Does T : X 1 ( M ) → Y boundedly? NOT OBVIOUS! X 1 ∋ f = � � � � λ j A j , � f � X 1 ≈ � λ j � j j

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend