garch models without positivity constraints
play

GARCH models without positivity constraints: Exponential or Log GARCH - PowerPoint PPT Presentation

Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations GARCH models without positivity constraints: Exponential or Log GARCH ? C. Francq, O. Wintenberger and J-M. Zakoan CREST and Lille 3


  1. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations GARCH models without positivity constraints: Exponential or Log GARCH ? ∗ C. Francq, O. Wintenberger and J-M. Zakoïan CREST and Lille 3 University, France CREST and Dauphine Univ., France CREST and Lille 3 University, France MSDM 2013, March 14-15 ∗ Supported by the project ECONOM&RISK (ANR 2010 blanc 1804 03) Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  2. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations Objectives Log-GARCH and EGARCH are two models for the log-volatility. Probabilistic properties and estimation of asymmetric Log-GARCH models. Differences and similarities between the log-GARCH and EGARCH models. Testing log-GARCH against EGARCH, or the reverse. Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  3. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations The standard GARCH model Engle (1982), Bollerslev (1986) Standard GARCH models: � ǫ t = σ t η t , ( η t ) t ∈ Z iid (0,1) t = ω + � q t − i + � p σ 2 i = 1 α i ǫ 2 j = 1 β j σ 2 t − j with positivity constraints ω > 0 , α i , β j ≥ 0 . Under relevant conditions on the parameter, the model is able to mimic some properties of the financial returns: this is a conditionally heterosckedastic white noise; the squares are positively autocorrelated; the model generates volatility clustering; the marginal distribution can be leptokurtic. Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  4. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations Two drawbacks of the standard GARCH Do not allows for asymmetries in volatility (leverage 1 effects): decreases of prices have an higher impact on the future volatility than increases of the same magnitude. Leverage effects The positivity constraints on the volatility coefficients entail 2 numerical and statistical difficulties ( e.g. non standard asymptotic distribution of constrained estimators at the boundary of the parameter space). ⇒ numerous extensions (see Bollerslev "Glossary to ARCH (GARCH)", 2009) Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  5. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations Two log-volatility models ǫ t = σ t η t , η t iid (0,1) Exponential-GARCH model: Nelson (1991) ω + � p t − j + � ℓ log σ 2 j = 1 β j log σ 2 i = 1 γ i + η + t − i + γ i − η − = t t − i Asymmetric log-GARCH model: ω + � p log σ 2 j = 1 β j log σ 2 = t t − j � � + � q log ǫ 2 α i + 1 { ǫ t − i > 0} + α i − 1 { ǫ t − i < 0} t − i i = 1 The log-GARCH model has been introduced by Geweke (1986), Pantula (1986) and Milhøj (1987) (see Sucarrat and Escribano (2010) for the symmetric case). Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  6. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations Basic features of the log-GARCH model Symmetric log-GARCH(1,1): log σ 2 ω + β log σ 2 t − 1 + α log ǫ 2 = t t − 1 ω + ( α + β )log σ 2 t − 1 + α log η 2 = t − 1 . Symmetric EGARCH(1,1): log σ 2 ω + β log σ 2 t − 1 + γ | η t − 1 | = t � � � � ǫ t − 1 ω + β log σ 2 � � t − 1 + γ � . = � σ t − 1 No positivity constraint on the parameters, but | η t | > 0 . Easily invertible, contrary to the EGARCH. The volatility is not bounded below by a strictly positive constant. Small values have persistent effects on volatility. Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  7. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations Basic features of the log-GARCH model Symmetric log-GARCH(1,1): log σ 2 ω + β log σ 2 t − 1 + α log ǫ 2 = t t − 1 ω + ( α + β )log σ 2 t − 1 + α log η 2 = t − 1 . Symmetric EGARCH(1,1): log σ 2 ω + β log σ 2 t − 1 + γ | η t − 1 | = t � � � � ǫ t − 1 ω + β log σ 2 � � t − 1 + γ � . = � σ t − 1 No positivity constraint on the parameters, but | η t | > 0 . Easily invertible, contrary to the EGARCH. The volatility is not bounded below by a strictly positive constant. Small values have persistent effects on volatility. Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  8. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations Basic features of the log-GARCH model Symmetric log-GARCH(1,1): log σ 2 ω + β log σ 2 t − 1 + α log ǫ 2 = t t − 1 ω + ( α + β )log σ 2 t − 1 + α log η 2 = t − 1 . Symmetric EGARCH(1,1): log σ 2 ω + β log σ 2 t − 1 + γ | η t − 1 | = t � � � � ǫ t − 1 ω + β log σ 2 � � t − 1 + γ � . = � σ t − 1 No positivity constraint on the parameters, but | η t | > 0 . Easily invertible, contrary to the EGARCH. The volatility is not bounded below by a strictly positive constant. Small values have persistent effects on volatility. Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  9. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations Basic features of the log-GARCH model Symmetric log-GARCH(1,1): log σ 2 ω + β log σ 2 t − 1 + α log ǫ 2 = t t − 1 ω + ( α + β )log σ 2 t − 1 + α log η 2 = t − 1 . Symmetric EGARCH(1,1): log σ 2 ω + β log σ 2 t − 1 + γ | η t − 1 | = t � � � � ǫ t − 1 ω + β log σ 2 � � t − 1 + γ � . = � σ t − 1 No positivity constraint on the parameters, but | η t | > 0 . Easily invertible, contrary to the EGARCH. The volatility is not bounded below by a strictly positive constant. Small values have persistent effects on volatility. Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  10. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations Basic features of the log-GARCH model Symmetric log-GARCH(1,1): log σ 2 ω + β log σ 2 t − 1 + α log ǫ 2 = t t − 1 ω + ( α + β )log σ 2 t − 1 + α log η 2 = t − 1 . Symmetric EGARCH(1,1): log σ 2 ω + β log σ 2 t − 1 + γ | η t − 1 | = t � � � � ǫ t − 1 ω + β log σ 2 � � t − 1 + γ � . = � σ t − 1 No positivity constraint on the parameters, but | η t | > 0 . Easily invertible, contrary to the EGARCH. The volatility is not bounded below by a strictly positive constant. Small values have persistent effects on volatility. Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  11. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations Basic features of the asymmetric log-GARCH model Asymmetric log-GARCH(1,1): � � log σ 2 ω + β log σ 2 log ǫ 2 = t − 1 + α + 1 { ǫ t − 1 > 0} + α − 1 { ǫ t − 1 < 0} t t − 1 � � log σ 2 = ω + α + 1 { η t − 1 > 0} + α − 1 { η t − 1 < 0} + β t − 1 � � log η 2 α + 1 { η t − 1 > 0} + α − 1 { η t − 1 < 0} t − 1 . + Asymmetric EGARCH(1,1): log σ 2 ω + β log σ 2 t − 1 + γ + η + t − 1 + γ − η − t − 1 . = t Asymmetric random persistence parameter. Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  12. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations Effect of a small value 5 4 3 2 σ t 2 GARCH EGARCH 1 Log−GARCH 0 η 50 = 1 η 150 = 1 η 201 ≈ 0 η 251 = 1 η 351 = 1 0 GARCH: σ 2 t = 0.06 + 0.09 ǫ 2 t − 1 + 0.89 σ 2 t − 1 log-GARCH: log σ 2 t = 0.033 + 0.03log ǫ 2 t − 1 + 0.93log σ 2 t − 1 EGARCH: log σ 2 t = 0.044 + 0.3 | η t − 1 |+ 0.9log σ 2 t − 1 Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  13. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations Effect of a sequence of small values 5 4 GARCH EGARCH 3 2 Log−GARCH σ t 2 1 0 η 50 ≈ 0 η 150 ≈ 0 η 251 = 1 η 351 = 1 0 GARCH: σ 2 t = 0.06 + 0.09 ǫ 2 t − 1 + 0.89 σ 2 t − 1 log-GARCH: log σ 2 t = 0.033 + 0.03log ǫ 2 t − 1 + 0.93log σ 2 t − 1 EGARCH: log σ 2 t = 0.044 + 0.3 | η t − 1 |+ 0.9log σ 2 t − 1 Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  14. Probabilistic properties of the log-GARCH Estimating and testing the Log-GARCH Numerical illustrations Effect of a large value 5.5 GARCH 4.5 EGARCH Log−GARCH 2 σ t 3.5 2.5 η t = 1 η t = 1 η t = 3 η t = 1 η t = 1 0 GARCH: σ 2 t = 0.06 + 0.09 ǫ 2 t − 1 + 0.89 σ 2 t − 1 log-GARCH: log σ 2 t = 0.033 + 0.03log ǫ 2 t − 1 + 0.93log σ 2 t − 1 EGARCH: log σ 2 t = 0.044 + 0.3 | η t − 1 |+ 0.9log σ 2 t − 1 Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

  15. Probabilistic properties of the log-GARCH Stationarity conditions Estimating and testing the Log-GARCH Existence of log-moments Numerical illustrations Existence of moments Probabilistic properties of the log-GARCH 1 Stationarity conditions Existence of log-moments Existence of moments Estimating and testing the Log-GARCH 2 Numerical illustrations 3 Francq, Wintenberger and Zakoïan Exponential or Log GARCH ?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend