from weak to strong lp gaps for all csps
play

From Weak to Strong LP Gaps for all CSPs Mrinalkanti Ghosh joint - PowerPoint PPT Presentation

From Weak to Strong LP Gaps for all CSPs Mrinalkanti Ghosh joint work with: Madhur Tulsiani MAX k-CSP - n variables - m constraints MAX k-CSP - n variables taking boolean values. - m constraints: each is a k-ary boolean predicate. - Satisfy


  1. From Weak to Strong LP Gaps for all CSPs Mrinalkanti Ghosh joint work with: Madhur Tulsiani

  2. MAX k-CSP - n variables - m constraints

  3. MAX k-CSP - n variables taking boolean values. - m constraints: each is a k-ary boolean predicate. - Satisfy as many as possible.

  4. MAX k-CSP - n variables taking boolean values. - m constraints: each is a k-ary boolean predicate. - Satisfy as many as possible. Max-3-SAT x 1 ∨ x 22 ∨ x 19 x 3 ∨ x 9 ∨ x 23 x 5 ∨ x 7 ∨ x 9 . . .

  5. MAX k-CSP - n variables taking boolean values. - m constraints: each is a k-ary boolean predicate. - Satisfy as many as possible. Max-3-SAT Max-Cut x 1 x 1 ∨ x 22 ∨ x 19 x 2 x 1 � = x 2 x 4 x 3 ∨ x 9 ∨ x 23 x 2 � = x 5 x 3 � = x 4 x 5 ∨ x 7 ∨ x 9 . . . . x 5 x 7 x 3 . . x 6

  6. MAX k-CSP - n variables taking boolean values. - m constraints: each is a k-ary boolean predicate. - Satisfy as many as possible. Max-3-SAT Max-Cut x 1 x 1 ∨ x 22 ∨ x 19 x 2 x 1 � = x 2 x 4 x 3 ∨ x 9 ∨ x 23 x 2 � = x 5 x 3 � = x 4 x 5 ∨ x 7 ∨ x 9 . . . . x 5 x 7 x 3 . . x 6 Approximation Problem: Approximate the fraction of constraints simultaneously satisfiable.

  7. MAX k-CSP - n variables taking values in some finite domains. - m constraints: each is a non-negative k-ary function. - Satisfy as many as possible. Max-3-SAT Max-Cut x 1 x 1 ∨ x 22 ∨ x 19 x 2 x 1 � = x 2 x 4 x 3 ∨ x 9 ∨ x 23 x 2 � = x 5 x 3 � = x 4 x 5 ∨ x 7 ∨ x 9 . . . . x 5 x 7 x 3 . . x 6 Approximation Problem: Approximate the fraction of constraints simultaneously satisfiable.

  8. CSPs and Relaxations MAX k-CSP (f): for i -th constraint, let S C i := ( x i 1 , · · · , x i k ). Then: � C i ≡ f ( x i 1 + b i 1 , · · · , x i k + b i k ) ≡ f ( α + b C i ) · x ( S Ci ,α ) , SCi α ∈{ 0 , 1 } with x ( S Ci ,α ) = indicator of assignment of α to S C i .

  9. CSPs and Relaxations MAX k-CSP (f): for i -th constraint, let S C i := ( x i 1 , · · · , x i k ). Then: � C i ≡ f ( x i 1 + b i 1 , · · · , x i k + b i k ) ≡ f ( α + b C i ) · x ( S Ci ,α ) , SCi α ∈{ 0 , 1 } with x ( S Ci ,α ) = indicator of assignment of α to S C i . � ∀ C ∈ Φ , i ∈ S C , x ( S C ,α ) = x ( i , b ) b ∈ { 0 , 1 } α ∈{ 0 , 1 } SC α ( i )= b � x ( i , b ) = 1 ∀ i ∈ [ n ] b ∈{ 0 , 1 } x ( S ,α ) ≥ 0

  10. CSPs and Relaxations MAX k-CSP (f): for i -th constraint, let S C i := ( x i 1 , · · · , x i k ). Then: � C i ≡ f ( x i 1 + b i 1 , · · · , x i k + b i k ) ≡ f ( α + b C i ) · x ( S Ci ,α ) , SCi α ∈{ 0 , 1 } with x ( S Ci ,α ) = indicator of assignment of α to S C i . �� � maximize α ∈{ 0 , 1 } SC f ( α + b C ) · x ( S C ,α ) E C ∈ Φ � ∀ C ∈ Φ , i ∈ S C , x ( S C ,α ) = x ( i , b ) b ∈ { 0 , 1 } α ∈{ 0 , 1 } SC α ( i )= b � x ( i , b ) = 1 ∀ i ∈ [ n ] b ∈{ 0 , 1 } x ( S ,α ) ≥ 0

  11. CSPs and Relaxations MAX k-CSP (f): for i -th constraint, let S C i := ( x i 1 , · · · , x i k ). Then: � C i ≡ f ( x i 1 + b i 1 , · · · , x i k + b i k ) ≡ f ( α + b C i ) · x ( S Ci ,α ) , SCi α ∈{ 0 , 1 } with x ( S Ci ,α ) = indicator of assignment of α to S C i . �� � maximize α ∈{ 0 , 1 } SC f ( α + b C ) · x ( S C ,α ) E C ∈ Φ � #constraints = ∀ C ∈ Φ , i ∈ S C , � m · 2 k � x ( S C ,α ) = x ( i , b ) Θ b ∈ { 0 , 1 } α ∈{ 0 , 1 } SC α ( i )= b � x ( i , b ) = 1 ∀ i ∈ [ n ] b ∈{ 0 , 1 } x ( S ,α ) ≥ 0

  12. Extended Formulation and Sherali-Adams Relaxation - Extended Formulation: Defined by a feasible polytope P , and a way of encoding instances Φ as a (linear) objective function w Φ .

  13. Extended Formulation and Sherali-Adams Relaxation - Extended Formulation: Defined by a feasible polytope P , and a way of encoding instances Φ as a (linear) objective function w Φ . - Optimize objective � w Φ , x � (depending on Φ) over P .

  14. Extended Formulation and Sherali-Adams Relaxation - Extended Formulation: Defined by a feasible polytope P , and a way of encoding instances Φ as a (linear) objective function w Φ . - Optimize objective � w Φ , x � (depending on Φ) over P . - Introduce additional variables y . Image from [Fiorini-Rothvoss-Tiwari-11] Optimize over polytope P = { x | ∃ y Ex + Fy = g , y ≥ 0 } . Size equals #variables + #constraints.

  15. Extended Formulation and Sherali-Adams Relaxation - Extended Formulation: Defined by a feasible polytope P , and a way of encoding instances Φ as a (linear) objective function w Φ . - Sherali-Adams: A Sherali-Adams of level t is an Extended Formulation with � · 2 t . � n Image from #variables = t [Fiorini-Rothvoss-Tiwari-11]

  16. Extended Formulation and Sherali-Adams Relaxation - Extended Formulation: Defined by a feasible polytope P , and a way of encoding instances Φ as a (linear) objective function w Φ . - Sherali-Adams: A Sherali-Adams of level t is an Extended Formulation with � · 2 t . � n Image from #variables = t [Fiorini-Rothvoss-Tiwari-11] - Variables: x ( S ,α ) , | S | ≤ t , α ∈ { 0 , 1 } S .

  17. Extended Formulation and Sherali-Adams Relaxation EF: - Extended Formulation: Defined by a feasible polytope P , and a way of encoding instances Φ as a (linear) objective function w Φ . - Sherali-Adams: A Sherali-Adams of level t is an Extended Formulation with � · 2 t . � n SA: #variables = t D S ∩ T S T D S D T - Feasible point in SA ( t ): Family {D S } | S |≤ t of consistent distribution with D S a distribution on { 0 , 1 } S .

  18. Extended Formulation and Sherali-Adams Relaxation EF: - Extended Formulation: Defined by a feasible polytope P , and a way of encoding instances Φ as a (linear) objective function w Φ . - Sherali-Adams: A Sherali-Adams of level t is an Extended Formulation with � · 2 t . � n SA: #variables = t D S ∩ T S T D S D T - Feasible point in SA ( t ): Family {D S } | S |≤ t of consistent distribution with D S a distribution on { 0 , 1 } S . Basic: C 1 C 2 - Similarly, for Basic LP solution.

  19. Result

  20. Result

  21. Result Main Theorem: For all CSPs, if Ba- sic LP has integral- ity gap of ( c , s ) then for all ε > 0, there exist large enough instance(s) with integrality gap of ( c − ε, s + ε ) for SA ( � O ε (log n )).

  22. Result With [Kothari- Meka-Raghavendra- 17]: For all CSPs, if Basic LP has ( c , s ) gap, then so does any LP Extended For- mulation of size n � O (log n ) . Ignoring ε losses.

  23. Hard Instance Basic: SA: C 1 C 2 D S ∩ T S T D S D T

  24. Hard Instance Basic: SA: C 1 C 2 D S ∩ T S T D S D T Use the hard instance Φ 0 of the basic relaxation as template to build the new hard instance on n variables and m = ∆ · n constraints.

  25. Hard Instance #variables = n and #constraints = m = ∆ · n .

  26. Hard Instance #variables = n and #constraints = m = ∆ · n . b 9 - For each variable in Φ 0 , create x 9 x 8 b 8 bucket with large number of x 7 b 7 variables. x 6 b 6 x 5 b 5 x 4 b 4 x 3 b 3 x 2 b 2 x 1 b 1 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9

  27. Hard Instance #variables = n and #constraints = m = ∆ · n . b 9 - For each variable in Φ 0 , create x 9 x 8 b 8 bucket with large number of x 7 b 7 variables. x 6 b 6 - Independently, sample each x 5 b 5 x 4 constraint as: b 4 x 3 b 3 x 2 b 2 x 1 b 1 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9

  28. Hard Instance #variables = n and #constraints = m = ∆ · n . b 9 - For each variable in Φ 0 , create x 9 x 8 b 8 bucket with large number of x 7 b 7 variables. x 6 b 6 - Independently, sample each x 5 b 5 x 4 constraint as: b 4 x 3 b 3 Sample constraint C from Φ 0 . x 2 b 2 x 1 b 1 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9

  29. Hard Instance #variables = n and #constraints = m = ∆ · n . b 9 - For each variable in Φ 0 , create x 9 x 8 b 8 bucket with large number of x 7 b 7 variables. x 6 b 6 - Independently, sample each x 5 b 5 x 4 constraint as: b 4 x 3 b 3 Sample constraint C from Φ 0 . x 2 b 2 For each variable x in S C , choose x 1 b 1 y x ∈ B x , u.a.r. Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9

  30. Hard Instance #variables = n and #constraints = m = ∆ · n . b 9 - For each variable in Φ 0 , create x 9 x 8 b 8 bucket with large number of x 7 b 7 variables. x 6 b 6 - Independently, sample each x 5 b 5 x 4 constraint as: b 4 x 3 b 3 Sample constraint C from Φ 0 . x 2 b 2 For each variable x in S C , choose x 1 b 1 y x ∈ B x , u.a.r. Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 Put the constraint C on the variables { y x } x ∈ S C .

  31. Hard Instance #variables = n and #constraints = m = ∆ · n . b 9 - For each variable in Φ 0 , create x 9 x 8 b 8 bucket with large number of x 7 b 7 variables. x 6 b 6 - Independently, sample each x 5 b 5 x 4 constraint as: b 4 x 3 b 3 Sample constraint C from Φ 0 . x 2 b 2 For each variable x in S C , choose x 1 b 1 y x ∈ B x , u.a.r. Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 Φ 0 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 n / 9 Put the constraint C on the variables { y x } x ∈ S C . W.h.p., the instance hypergraph generated has o ( n ) cycles of length at most η log n for η > 0.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend