from moments to sparse representations a geometric
play

From moments to sparse representations, a geometric, algebraic and - PowerPoint PPT Presentation

From moments to sparse representations, a geometric, algebraic and algorithmic viewpoint Bernard Mourrain Inria Mditerrane, Sophia Antipolis Bernard.Mourrain@inria.fr Sparse representation problems Sparse representation of sequences Given


  1. From moments to sparse representations, a geometric, algebraic and algorithmic viewpoint Bernard Mourrain Inria Méditerranée, Sophia Antipolis Bernard.Mourrain@inria.fr

  2. Sparse representation problems

  3. Sparse representation of sequences Given a sequence of values σ 0 , σ 1 , . . . , σ s ∈ C , find/guess the values of σ n for all n ∈ N . ☞ Find r ∈ N , ω i , ξ i ∈ C such that σ n = � r 1 ω i ξ i n , for all n ∈ N . Example: 0, 1, 1, 2, 3, 5, 8, 13, . . . . Solution: ◮ Find a recurrence relation valid for the first terms: σ k + 2 − σ k + 1 − σ k = 0. √ √ ◮ Find the roots ξ 1 = 1 + 5 , ξ 2 = 1 − 5 (golden numbers) of the characteristic 2 2 polynomial: x 2 − x − 1 = 0. √ √ ) n − 5 ( 1 + 5 ( 1 − 1 5 1 5 ) n . ◮ Deduce σ n = √ √ 2 2 1

  4. Sparse representation of signals Given a function or signal f ( t ) : decompose it as r ′ r ( a i cos ( µ i t ) + b i sin ( µ i t )) e ν i t = � � ω i e ζ i t f ( t ) = i = 1 i = 1 2

  5. Prony’s method (1795) For the signal f ( t ) = � r i = 1 ω i e ζ i t , ( ω i , ζ i ∈ C ), • Evaluate f at 2 r regularly spaced points: σ 0 := f ( 0 ) , σ 1 := f ( 1 ) , . . . • Compute a non-zero element p = [ p 0 , . . . , p r ] in the kernel:     σ 0 σ 1 . . . σ r p 0 σ 1 σ r + 1 p 1         = 0 . . .     . . . . . .         σ r − 1 . . . σ 2 r − 1 σ 2 r − 1 p r • Compute the roots ξ 1 = e ζ 1 , . . . , ξ r = e ζ r of p ( x ) := � r i = 0 p i x i . • Solve the system       1 . . . . . . 1 ω 1 σ 0 ξ 1 ξ r ω 2 σ 1             = . . . . .       . . . . . . . .             ξ r − 1 ξ r − 1 . . . . . . ω r σ r − 1 3 r 1

  6. Symmetric tensor decomposition and Waring problem (1770) Symmetric tensor decomposition problem: Given a homogeneous polynomial ψ of degree d in the variables x = ( x 0 , x 1 , . . . , x n ) with coefficients ∈ K : � d � � x α , ψ ( x ) = σ α α | α | = d find a minimal decomposition of ψ of the form r � ω i ( ξ i , 0 x 0 + ξ i , 1 x 1 + · · · + ξ i , n x n ) d ψ ( x ) = i = 1 n + 1 spanning disctint lines, ω i ∈ K . with ξ i = ( ξ i , 0 , ξ i , 1 , . . . , ξ i , n ) ∈ K The minimal r in such a decomposition is called the rank of ψ . 4

  7. Sylvester approach (1851) Theorem The binary form ψ ( x 0 , x 1 ) = � d � d x d − i � x i i = 0 σ i 1 can be decomposed as a i 0 sum of r distinct powers of linear forms r � ω k ( α k x 0 + β k x 1 ) d ψ = k = 1 0 + p 1 x r − 1 iff there exists a polynomial p ( x 0 , x 1 ) := p 0 x r x 1 + · · · + p r x r 1 s.t. 0     σ 0 σ 1 . . . σ r p 0 σ 1 σ r + 1 p 1         = 0 . . .     . . . . . .         σ d − r . . . σ d − 1 σ d p r and of the form p = c � r k = 1 ( β k x 0 − α k x 1 ) with ( α k : β k ) distinct. 5

  8. Sparse interpolation Given a black-box polynomial function f ( x ) find what are the terms inside from output values. ☞ Find r ∈ N , ω i ∈ C , α i ∈ N such that f ( x ) = � r i = 1 ω i x α i . 6

  9. • Choose ϕ ∈ C • Compute the sequence of terms σ 0 = f ( 1 ) , . . . , σ 2 r − 1 = f ( ϕ 2 r − 1 ) ; • Construct the matrix H = [ σ i + j ] and its kernel p = [ p 0 , . . . , p r ] s.t.     σ 0 σ 1 . . . σ r p 0 σ 1 σ r + 1 p 1         = 0 . . .     . . . . . .         σ r − 1 . . . σ 2 r − 1 σ 2 r − 1 p r i = 0 p i x i and • Compute the roots ξ 1 = ϕ α 1 , . . . , ξ r = ϕ α r of p ( x ) := � r deduce the exponents α i = log ϕ ( ξ i ) . • Deduce the weights W = [ ω i ] by solving V Ξ W = [ σ 0 , . . . , σ r − 1 ] where V Ξ is the Vandermonde system of the roots ξ 1 , . . . , ξ r . 7

  10. Decoding − − − − − − − − − − → An algebraic code: E = { c ( f ) = [ f ( ξ 1 ) , . . . , f ( ξ m )] | f ∈ K [ x ]; deg ( f ) ≤ d } . Encoding messages using the dual code: C = E ⊥ = { c | c · [ f ( ξ 1 ) , . . . , f ( ξ m )] = 0 ∀ f ∈ V = � x a � ⊂ F [ x ] } Message received: r = m + e for m ∈ C where e = [ ω 1 , . . . , ω m ] is an error with ω j � = 0 for j = i 1 , . . . , i r and ω j = 0 otherwise. ☞ Find the error e . 8

  11. Berlekamp-Massey method (1969) • Compute the syndrome σ k = c ( x k ) · r = c ( x k ) · e = � r j = 1 ω i j ξ k i j . • Compute the matrix     σ 0 σ 1 . . . σ r p 0 σ 1 σ r + 1 p 1         = 0 . . .     . . . . . .         σ r − 1 . . . σ 2 r − 1 σ 2 r − 1 p r and its kernel p = [ p 0 , . . . , p r ] . • Compute the roots of the error locator polynomial i = 0 p i x i = p r p ( x ) = � r � r j = 1 ( x − ξ i j ) . • Deduce the errors ω i j . 9

  12. Simultaneous decomposition Simultaneous decomposition problem Given symmetric tensors ψ 1 , . . . , ψ m of order d 1 , . . . , d m , find a simultaneous decomposition of the form r � ω l , i ( ξ i , 0 x 0 + ξ i , 1 x 1 + · · · + ξ i , n x n ) d l ψ l = i = 1 n + 1 and ω l , i ∈ K for where ξ i = ( ξ i , 0 , . . . , ξ i , n ) span distinct lines in K l = 1 , . . . , m . 10

  13. Proposition (One dimensional decomposition) Let ψ l = � d l x d l − i � d l � x i i = 0 σ 1 , i 1 ∈ K [ x 0 , x 1 ] d l for l = 1 , . . . , m . i 0 0 + p 1 x r − 1 If there exists a polynomial p ( x 0 , x 1 ) := p 0 x r x 1 + · · · + p r x r 1 s.t. 0   σ 1 , 0 σ 1 , 1 . . . σ 1 , r σ 1 , 1 σ 1 , r + 1     . .  . .  . .     p 0    σ 1 , d 1 − r . . . σ 1 , d 1 − 1 σ 1 , d 1    p 1   . .   . .   = 0   . . .   .   .     σ m , 0 σ m , 1 . . . σ m , r     p r    σ m , 1 σ r + 1    . .   . .   . .   σ m , d m − r . . . σ m , d m − 1 σ m , d m of the form p = c � r k = 1 ( β k x 0 − α k x 1 ) with [ α k : β k ] distinct, then r � ω i , l ( α l x 0 + β l x 1 ) d l ψ l = i = 1 for ω i , l ∈ K and l = 1 , . . . , m . 11

  14. Duality

  15. Dual of polynomial rings For R = K [ x ] = K [ x 1 , . . . , x n ] = { p = � α ∈ A p α x α , p α ∈ K } , K [ x ] ∗ = Hom K ( K [ x ] , K ) The element σ ∈ R ∗ : p ∈ R �→ � σ | p � ∈ K is a linear functional on R . The coefficients � σ | x α � = σ α ∈ K , α ∈ N n are the moments of σ . Examples: • p �→ coefficient of x α in p • e ζ : p �→ p ( ζ ) for ζ = ( ζ 1 , . . . , ζ n ) ∈ K n . • For K = R , Ω ⊂ R n compact, � � Ω : p �→ Ω p ( x ) d x Structure of K [ x ] -module: p ⋆ σ ∈ R ∗ : q �→ � σ | p q � . Example: For p , q ∈ R , p ⋆ e ζ : q �→ � e ζ | p q � = p ( ζ ) � e ζ | q � ⇒ p ⋆ e ζ = p ( ζ ) e ζ Property: For p , q ∈ R , σ ∈ R ∗ , p ⋆ ( q ⋆ σ ) = p q ⋆ σ = q ⋆ ( p ⋆ σ ) . 12

  16. Linear functionals as sequences Correspondence: σ ∈ K [ x ] ∗ ≡ ( σ α ) α ∈ N n ∈ K N n sequence indexed by α = ( α 1 , . . . , α n ) ∈ N n with σ α = � σ | x α � . p α x α ∈ R �→ � σ | p � = � � σ α p α ∈ K σ : p = α α Example: e ζ ≡ ( ζ α ) α ∈ K N n where ζ α = ζ α 1 1 · · · ζ α n n . Structure of K [ x ] -module: α ∈ A p α x α ∈ R , σ ≡ ( σ α ) α ∈ N n ∈ K N n , β ∈ N n For p = � � ( p ⋆ σ ) β = p α σ α + β α ∈ A (correlation sequence). 13

  17. Linear functionals as series Correspondence: σ ∈ K [ x ] ∗ ≡ y α α ∈ N n σ α z α ∈ K [[ z 1 , . . . , z n ]] σ ( y ) = � α ! ∈ K [[ y 1 , . . . , y n ]] σ ( z ) = � α ∈ N n σ α with σ α = � σ | x α � , α ! = � α i ! for α = ( α 1 , . . . , α n ) ∈ N n . Example: α ζ α y α α ! = e ζ · y ∈ K [[ y ]] e ζ ( z ) = � α ζ α z α = 1 e ζ ( y ) = � i = 1 ( 1 − ζ i z i ) ∈ K [[ z ]] � n y α ◮ For p = � α p α ∈ R , σ ( y ) = � α ∈ N n σ α α ! ∈ K [[ y ]] , � σ | p � = � α σ α p α ◮ The basis dual to ( x α ) is ( y α α ! ) α ∈ N n (resp. ( z α ) α ∈ N n ) x ( p )( 0 ) , � z α | p � = coeff. of x α in p . ◮ For p ∈ R , α ∈ N n , � y α | p � = ∂ α Structure of R -module: y α − e 1 α 1 > 0 σ α z α − e 1 x 1 ⋆ σ ( y ) = � α 1 > 0 σ α x 1 ⋆ σ ( z ) = � ( α − e 1 )! π + ( z − 1 = ∂ y 1 ( σ ( y )) = 1 σ ( z )) π + ( p ( z − 1 1 , . . . , z − 1 p ⋆ σ = p ( ∂ 1 , . . . , ∂ n )( σ )( y ) p ⋆ σ = n ) σ ( z )) 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend