from higher spins to strings
play

From Higher Spins to Strings Rajesh Gopakumar Harish-Chandra - PowerPoint PPT Presentation

From Higher Spins to Strings Rajesh Gopakumar Harish-Chandra Research Institute Strings 2014, Princeton, June 24th, 2014 Based on: M. R. Gaberdiel and R. G. (arXiv:1406.tmrw and also 1305.4181) Why are We Studying Higher Spin Theories? Free


  1. From Higher Spins to Strings Rajesh Gopakumar Harish-Chandra Research Institute Strings 2014, Princeton, June 24th, 2014 Based on: M. R. Gaberdiel and R. G. (arXiv:1406.tmrw and also 1305.4181)

  2. Why are We Studying Higher Spin Theories? • Free YM theory has a tower of conserved currents dual to Vasiliev H-spin gauge fields ( Sundborg, Witten ). • Signals the presence of a large unbroken symmetry phase of the string theory ( Gross, Witten, Moore, Sagnotti et.al. ). • Can the Vasiliev H-Spin symmetries help to get a handle on the extended stringy symmetry in tensionless limit? • might be a good test case since it already has Virasoro AdS 3 (and then extended to - Henneaux-Rey, Campoleoni et.al. ). W ∞ • Symmetric product CFT for D1-D5 system has been believed to be dual to tensionless limit of string theory.

  3. The Punchline Vasiliev higher spin symmetry organises all the ( T 4 ) N +1 /S N +1 states of the orbifold symmetric product CFT = Tensionless limit of strings AdS 3 × S 3 × T 4 on .

  4. Stringy Symmetries In particular: The chiral sector (conserved currents) can be written in terms of representations of the higher spin symmetry algebra. X Z NS ( q, y ) = n ( Λ ) χ (0; Λ ) ( q, y ) Λ ∈ U ( N ) Chiral part of Characters of N = 4 Symm. Prod. multiplicity of minimal model singlets in Λ S N +1 coset: reps. W ∞ Infinite (stringy) extension of symmetry. W ∞

  5. Explicitly..... • The vacuum character ( ) contains the usual W ∞ Λ = 0 generators - bilinears in free fermions and bosons. • Additional chiral generators ( ) can be written Λ 6 = 0 down explicitly in terms of free fermions and bosons . N +1 − 1 / 2 ψ i β X ψ i α Λ = [2 , 0 . . . , 0] ↔ − 1 / 2 i =1 N +1 − 1 / 2 ψ j β − 1 / 2 ψ i γ − 1 / 2 ψ j δ X ψ i α Λ = [0 , 2 , 0 . . . , 0] ↔ − 1 / 2 i,j =1

  6. N = 4 Large AdS 3 × S 3 × T 4 • String theory on has small N = 4 SUSY . • Useful to consider via a limit of H-spin holography for large coset CFTs. ( Gaberdiel-R.G. ) N = 4 • Large SCA has two SU(2) Kac-Moody algebras . N = 4 k − Thus labelled by one extra parameter: . γ = k + + k − • Small obtained as a contraction - . N = 4 k + → ∞ • Only one SU(2) KM algebra at level . k −

  7. N = 4 Large Coset Holography 4(N+1) free fermions The CFT: su ( N + 2) (1) = su ( N + 2) k ⊕ so (4 N + 4) 1 ⊕ u (1) (1) ⊕ u (1) (1) ∼ κ ⊕ u (1) . su ( N ) (1) u ( N ) k +2 κ c = 6( k + 1)( N + 1) . Take ‘t Hooft limit N, k → ∞ k + N + 2 with fixed. (Gaberdiel-R.G.) N + 1 λ = N + k + 2 = γ Has Large ( van Proeyen et.al., Sevrin et.al. ) with N = 4 k + = ( k + 1); k − = ( N + 1)

  8. Coset Holography (Contd.) The H-Spin Dual: • Vasiliev theory based on gauge group (Prokushkin- shs 2 [ λ ] Vasiliev) . • One higher spin gauge supermultiplet for each spin s ≥ 1 s : ( 1 , 1 ) SU(2) labels s + 1 2 : ( 2 , 2 ) R ( s ) : s + 1 : ( 3 , 1 ) ⊕ ( 1 , 3 ) s + 3 2 : ( 2 , 2 ) s + 2 : ( 1 , 1 ) . • Generates an asymptotic super algebra which matches W ∞ nontrivially with coset ( Gaberdiel-Peng, Beccaria et.al. ).

  9. Representations W ∞ • Primaries labelled by ( Λ + ; Λ − , u ) ∈ u (1) κ (will be omitted) ∈ su ( N + 2) k ∈ su ( N ) k +2 • (0;f) “Perturbative” matter multiplets of H-Spin theory (with multi-particles) ( Chang-Yin ). (0; Λ ) k + 3 N + k + 2 → 1 − λ 2 h (0; f) = 2 (0; Λ ) ⊗ (0; Λ ∗ ) ⊂ H (diag) = H (pert) = M M ( Λ + ; Λ − ) ⊗ ( Λ ∗ + ; Λ ∗ − ) Λ + , Λ − Λ Contains “light states”

  10. N = 4 contracts N = 4 c = 6( k + 1)( N + 1) k →∞ → c = 6( N + 1) − − − − k + N + 2 • Coset CFT reduces to a continuous orbifold . ( T 4 ) N +1 /U ( N ) • The WZW factors decompactify to give 4(N+1) free bosons which combine with the 4(N+1) free fermions, gauged by U(N) . 2 · ( N , 1 ) ⊕ 2 · ( ¯ Bosons: N , 1 ) ⊕ 4 · ( 1 , 1 ) ( N , 2 ) ⊕ ( ¯ N , 2 ) ⊕ 2 · ( 1 , 2 ) Fermions: fund. of U(N) SU (2) R Singlet of U(N)

  11. Continuous Orbifold • Untwisted sector: U(N) singlets formed from fermions/bosons. i α e h (0; f ) = 1 − λ → 1 (0;¯ ¯ ψ i β k →∞ E.g. ; ( Note: ) f) ⊗ (0; f) ↔ ψ − − − − 2 2 • More generally, Vasiliev States M (0; Λ ) ⊗ (0; Λ ∗ ) = H (pert) H untwisted = Λ N = 2 Similar to bosonic and cases ( Gaberdiel-Suchanek, Gaberdiel-Kelm ) • Twisted Sector: Continuous twists (U(N) holonomies) leads to a continuum (incl. light states). Labelled by . ( Λ + ; Λ − ) : w/ Λ + 6 = 0

  12. A Tale of Two Orbifolds • How do we relate to ? ( T 4 ) N +1 /U ( N ) ( T 4 ) N +1 /S N +1 • and N , ¯ S N +1 ⊂ U ( N ) N → N N Dim. Irrep. of S N +1 2 · ( N , 1 ) ⊕ 2 · ( ¯ N , 1 ) ⊕ 4 · ( 1 , 1 ) → 4 · ( N, 1 ) ⊕ 4 · (1 , 1 ) Bosons: ( N , 2 ) ⊕ ( ¯ N , 2 ) ⊕ 2 · ( 1 , 2 ) → 2 · ( N, 2 ) ⊕ 2 · (1 , 2 ) Fermions: How fermions and bosons in usual symmetric product orbifold transform � � ⇒ ( T 4 ) N +1 /U ( N ) untwisted ⊂ ( T 4 ) N +1 /S N +1 � � � � untwisted

  13. Two Orbifolds (Contd.) • Therefore: H (pert) = (0; Λ ) ⊗ (0; Λ ∗ ) ⊂ H (Sym . Prod . ) � M � � untwisted Λ • i.e. Vasiliev states are a closed subsector of the Symmetric Product CFT = Tensionless string theory. • More generally, states of the symmetric product CFT must transform in specific representations of the chiral algebra of the continuous orbifold (the U(N) invariant i.e. currents). W ∞ y ) = |Z vac ( q, y ) | 2 + ( q, y ) | 2 + |Z (U) |Z (T) X X ( q, y ) | 2 Z NS ( q, ¯ q, y, ¯ j β β j Other untwisted sectors Twisted sectors

  14. Stringy Chiral Algebra • The vacuum sector ( invariant currents) can therefore be S N +1 organised in terms of coset ( ) representations - from the W ∞ untwisted sector of the continuous orbifold. X Z vac ( q, y ) = n ( Λ ) χ (0; Λ ) ( q, y ) Λ ∈ U ( N ) • Each such representation comes with a multiplicity which would be given by the number of times the singlet of S N +1 appears in the U(N) representation . Λ • A vast extension of - generators not just bilinear in W ∞ fermions/bosons but also cubic, quartic etc.

  15. Reality Check • Explicitly verify this equality to low orders - use DMVV prescription to compute 2 y 2 + 12 + 2 y − 2 � 1 2 + 2 y + 2 y − 1 � � � Z vac ( q, y ) = 1 + q q 2 y 3 + 32 y + 32 y − 1 + 2 y − 3 � 3 � + q 2 2 y 4 + 52 y 2 + 159 + 52 y − 2 + 2 y − 4 � q 2 � + 2 y 5 + 62 y 3 + 426 y + 426 y − 1 + 62 y − 3 + 2 y − 5 � 5 � + q 2 2 y 6 + 64 y 4 + 767 y 2 + 1800 + 767 y − 2 + 64 y − 4 + 2 y − 6 � q 3 � + 7 2 ) . + O ( q

  16. It Agrees! X 2 ψ i β ψ i α Vasiliev higher spin fields Additional higher spin generators : − 1 − 1 2 i Z vac ( q, y ) = χ (0;0) ( q, y ) + χ (0;[2 , 0 ,..., 0]) ( q, y ) + χ (0;[0 , 0 ,..., 0 , 2]) ( q, y ) + χ (0;[3 , 0 ,..., 0 , 0]) ( q, y ) + χ (0;[0 , 0 , 0 ,..., 0 , 3]) ( q, y ) + χ (0;[2 , 0 ,..., 0 , 1]) ( q, y ) + χ (0;[1 , 0 , 0 ,..., 0 , 2]) ( q, y ) + 2 · χ (0;[4 , 0 ,..., 0 , 0]) ( q, y ) + 2 · χ (0;[0 , 0 , 0 ,..., 0 , 4]) ( q, y ) + χ (0;[0 , 2 , 0 ,... 0 , 0]) ( q, y ) + χ (0;[0 , 0 ,... 0 , 2 , 0]) ( q, y ) + χ (0;[3 , 0 ,..., 0 , 1]) ( q, y ) + χ (0;[1 , 0 , 0 ,..., 0 , 3]) ( q, y ) + 2 · χ (0;[2 , 0 , 0 ,..., 0 , 2]) ( q, y ) + χ (0;[1 , 2 , 0 ,..., 0]) ( q, y ) + χ (0;[0 ,..., 0 , 2 , 1]) ( q, y ) + χ (0;[2 , 1 , 0 ,..., 0 , 1]) ( q, y ) + χ (0;[1 , 0 ,..., 0 , 1 , 2]) ( q, y ) + χ (0;[0 , 2 , 0 ,..., 0 , 1]) ( q, y ) + χ (0;[1 , 0 ,..., 0 , 2 , 0]) ( q, y ) + 3 · χ (0;[3 , 0 ,..., 0 , 2]) ( q, y ) +3 · χ (0;[2 , 0 ,..., 0 , 3]) ( q, y ) + χ (0;[1 , 1 , 0 ,..., 0 , 2]) ( q, y ) + χ (0;[2 , 0 ,..., 0 , 1 , 1]) ( q, y ) + χ (0;[0 , 0 , 2 , 0 ,..., 0]) ( q, y ) + χ (0;[0 ,..., 0 , 2 , 0 , 0]) ( q, y ) + 3 · χ (0;[0 , 2 , 0 ,..., 0 , 2]) ( q, y ) +3 · χ (0;[2 , 0 ,..., 0 , 2 , 0]) ( q, y ) + χ (0;[1 , 1 , 0 ,..., 0 , 1 , 1]) ( q, y ) + O ( q 7 / 2 ) .

  17. Reality Check (Contd.) • Can do something similar for the simplest non-trivial untwisted sector - which contains 16 of the 20 marginal ops. Z (U) X ( q, y ) = n 1 ( Λ ) χ (0; Λ ) ( q, y ) 1 Λ Contains ψ i α Multiplicity of N dim. irrep of in Λ S N +1 − 1 2 • Compute LHS (2 y + 2 y − 1 ) q 1 / 2 + (5 y 2 + 16 + 5 y − 2 ) q 1 Z 1 ( q, y ) = + (6 y 3 + 58 y + 58 y − 1 + 6 y − 3 ) q 3 / 2 + (6 y 4 + 128 y 2 + 315 + 128 y − 2 + 6 y − 4 ) q 2 + (6 y 5 + 198 y 3 + 1030 y + 1030 y − 1 + 198 y − 3 + 6 y − 5 ) q 5 / 2 + (6 y 6 + 240 y 4 + 2290 y 2 + 4724 + 2290 y − 2 + 240 y − 4 + 6 y − 6 ) q 3 + O ( q 3 ) .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend