frg erg e xact rg e xact rg
play

FRG ERG E xact RG E xact RG from first principles includes - PowerPoint PPT Presentation

Renormalization flow of relativistic fermions (2<d<4) Holger Gies Helmholtz Institute Jena & TPI, Friedrich-Schiller-Universitt Jena & FRG @ Jena Functional Renormalization from quantum gravity and dark energy to ultracold


  1. Renormalization flow of relativistic fermions (2<d<4) Holger Gies Helmholtz Institute Jena & TPI, Friedrich-Schiller-Universität Jena & FRG @ Jena Functional Renormalization – from quantum gravity and dark energy to ultracold atoms and condensed matter Heidelberg, March 7-10 2017

  2. FRG

  3. ERG

  4. E xact RG

  5. E xact RG from first principles “includes irrelevant operators” but often only approximation solutions

  6. NPRG

  7. fun RG

  8. ERG

  9. E uropean RG

  10. FRG

  11. FRG: a prediction! (W ETTERICH ’93)

  12. FRG: a prediction! (W ETTERICH ’93)

  13. FRG: a prediction! (W ETTERICH ’93) . . . written in FRG Land

  14. FRG: a prediction! (W ETTERICH ’93) . . . written in FRG Land . . . used only by IOC and FIFA

  15. FRG: a prediction! (W ETTERICH ’93) . . . written in FRG Land . . . use discouraged by authorities . . . considered to be a derogatory communist term

  16. From quantum gravity . . . to . . . condensed matter ✄ low dimensional relativistic fermions & quantum gravity ✄ (perturbative) QFT: � � δ ( γ ) = d − n E i [ φ i ] + n V α δ ( V α ) i α = ⇒ RG critical dimension: � 4 (gauge + matter, Yukawa/Higgs) D RG, cr = 2 (gravity, pure fermionic matter) ✄ many similarities: pert. nonrenormalizable, BUT: nonperturbatively renormalizable “Asymptotic safety” quantum phase transition

  17. From quantum gravity . . . to . . . condensed matter ✄ low dimensional relativistic fermions & quantum gravity ✄ (perturbative) QFT: � � δ ( γ ) = d − n E i [ φ i ] + n V α δ ( V α ) i α = ⇒ RG critical dimension: � 4 (gauge + matter, Yukawa/Higgs) D RG, cr = 2 (gravity, pure fermionic matter) ✄ many similarities: pert. nonrenormalizable, BUT: nonperturbatively renormalizable “Asymptotic safety” quantum phase transition . . . no experimental evidence so far . . .

  18. Chirality & Dirac Fermions ✄ d=3: { γ µ , γ ν } = 2 g µν , γ µ = 1 , 2 , 3 ∼ σ i = 1 , 2 , 3 (irreducible) = ⇒ no γ 5 (“no chirality”) ✄ Dirac fermions in irreducible representation: χ, ¯ χ 2-component

  19. Chirality & Dirac Fermions ✄ d=3: (reducible, 4-comp. spinors: ψ, ¯ { γ µ , γ ν } = 2 g µν , ψ ) P L / R = 1 = ⇒ γ 5 , 2 ( 1 ± γ 5 ) & γ 4 & P 45 L / R = 1 γ 45 = i γ 4 γ 5 2 ( 1 ± γ 45 ) L kin = ¯ ψ a i ∂ /ψ a = ¯ ψ a /ψ a L + ¯ ψ a /ψ a L i ∂ R i ∂ R = . . . ✄ max. chiral symmetry group: U ( 2 N f ) chiral symmetry (reducible) ≃ flavor symmetry (irreducible)

  20. Why 3 d chiral fermions? ✄ Goal: understanding QPTs with φ ↔ ψ, ¯ ψ order parameter gapless fermions . . . beyond the φ 4 paradigm (H ERBUT ’06) ✄ relativistic fermions from electrons on • honeycomb lattice • π -flux square lattice = ⇒ robust against weak interactions Hubbard model on honeycomb lattice (V OJTA ET AL .’00) Nodal d -wave superconductors (S ACHDEV ’10) ✄ for increasing coupling (Hubbard U or NN repulsion V ): phase transition: semi-metal → (Mott) insulator = ⇒ long-range order: AF, CDW, QAHS

  21. Gross-Neveu model a.k.a. “chiral Ising” ✄ classical action, e.g., in d=3: a = 1 , . . . , N f � � � 1 / ψ a + ¯ g ( ¯ d 3 x ψ a i ∂ ψ a ψ a ) 2 S = ¯ , [¯ g ] = − 1 2 N f ✄ symmetries of reducible model: • discrete “chiral” symmetry: ψ a → γ 5 ψ a , ψ a → − ¯ ❩ 5 ¯ ψ a γ 5 2 : • flavor symmetry: L / R = 1 P 45 2 ( 1 ± γ 45 ) : U ( N f ) L × U ( N f ) R

  22. Gross-Neveu model a.k.a. “chiral Ising” ✄ classical action, e.g., in d=3: a = 1 , . . . , 2 N f � � � 1 / χ a + d 3 x χ a i ∂ χ a χ a ) 2 S = ¯ g (¯ ¯ , [¯ g ] = − 1 2 N f ✄ symmetries of irreducible model: • parity symmetry: ❩ P χ a ( x ) → χ a ( − x ) , χ a ( x ) → − ¯ χ a ( − x ) 2 : ¯ • flavor symmetry: U ( 2 N f ) ✄ irreducible model in reducible notation (2 N f ∈ ◆ ): χ a χ a ) 2 ∼ ( ¯ ψγ 45 ψ ) 2 (¯

  23. Gross-Neveu model a.k.a. “chiral Ising” ✄ classical action, e.g., in d=3: a = 1 , . . . , N f � � � 1 / ψ a + ¯ g ( ¯ d 3 x ψ a i ∂ ψ a ψ a ) 2 S = ¯ , [¯ g ] = − 1 2 N f ✄ discrete “chiral” symmetry: ψ a → γ 5 ψ a , ψ a → − ¯ ❩ 5 ¯ ψ a γ 5 2 :

  24. Gross-Neveu model a.k.a. “chiral Ising” ✄ classical action, e.g., in d=3: a = 1 , . . . , N f � � � 1 / ψ a + ¯ g ( ¯ d 3 x ψ a i ∂ ψ a ψ a ) 2 S = ¯ , [¯ g ] = − 1 2 N f ✄ discrete “chiral” symmetry: ψ a → γ 5 ψ a , ψ a → − ¯ ❩ 5 ¯ ψ a γ 5 2 : ✄ Recette: On prend . . . (W ETTERICH ’93) ∂ t Γ k = 1 2 Tr ∂ t R k (Γ ( 2 ) + R k ) − 1 k

  25. Gross-Neveu model Simplest approximation: “pointlike” vertices: � � � 1 / ψ a + ¯ g k ( ¯ d 3 x ψ a i ∂ ¯ ψ a ψ a ) 2 Γ k = 2 N f ✄ RG flow of dim’less coupling g = k d − 2 ¯ g k : ✄ UV fixed point: g ∗ ✄ IR divergence in scalar channel for g Λ > g ∗ indication for χ SB ✄ critical exponent Θ = 1 /ν = 1 (in d = 3) = ⇒ asymptotically safe proven to all orders in 1 / N f expansion (G AWEDZKI , K UPIAINEN ’85; R OSENSTEIN , W ARR , P ARK ’89; DE C ALAN ET AL .’91)

  26. Partial Bosonization ✄ mapping to Yukawa model: (S TRATONOVICH ’58,H UBBARD ’59) � � 1 � / ψ a + ¯ g ( ¯ d 3 x ψ a i ∂ ψ a ψ a ) 2 ¯ S = 2 N f ↓ � � � h σ ) ψ a + N f m 2 σ 2 ¯ / + i ¯ d 3 x ψ a ( i ∂ S FB = 2 ¯ Pros: + RG flow into χ SB regime + access to long-range observables Cons: - use in FRG trunc’s: assumes dominance of bosonized channel - can be affected by “Fierz ambiguity” Cons less relevant for GN case

  27. RG flow of Gross Neveu model (R OSA ,V ITALE ,W ETTERICH ’01; H OFLING ,N OWAK ,W ETTERICH ’02; B RAUN ,HG,S CHERER ’10) ✄ NLO derivative expansion: � � � h σ ) ψ a + 1 2 Z σ ( ∂ µ σ ) 2 + U ( σ ) Z ψ ¯ / + i ¯ ψ a ( i ∂ Γ k = ✄ quantum phase transition g Λ < g ∗ g Λ > g ∗

  28. Exact large- N f fixed-point solution ✄ anomalous dimensions: (B RAUN ,HG,S CHERER ’10) η ψ = 0 , η σ = 1 ✄ large- N f fixed point effective potential for 2 < d < 4: , ρ = σ 2 u ∗ ( ρ ) = − 2 d − 8 � 1 − d 2 , 1 ; 2 − d 2 ; ( d − 4 )( d − 2 ) d � 3 d − 4 ρ 2 F 1 ρ 6 d − 8 d γ v d 2 ✄ exact critical exponents: Θ = 1 , − 1 , − 1 , − 3 , − 5 , − 7 , . . . = ⇒ critical surface: dim S = 1 physical parameter

  29. Global effective potential and finite N f ✄ FP solver with pseudo-spectral methods (B ORCHARDT ,K NORR ’15)

  30. 3 d Gross-Neveu universality class, (arbitrary N f ) (B RAUN ,HG,S CHERER ’10) correlation exponent: ν = 1 Θ 1 ✄ leading-order derivative expansion identical results for irreducible model (R OSA ,V ITALE ,W ETTERICH ’01; H OFLING ,N OWAK ,W ETTERICH ’02)

  31. FRG goes quantitative ✄ Derivative expansion: � � 1 ψψ + 1 2 Z ψ ( ρ )( ¯ ∂ψ − ( ∂ µ ¯ ψ ) γ µ ψ ) + h ( ρ ) ¯ 2 Z σ ( ρ )( ∂ µ σ ) 2 ψ/ Γ k = − U ( σ ) + iJ ψ ( ρ )( ∂ µ ρ ) ¯ ψγ µ ψ + X 1 ( ρ ) σ ( ∂ µ ¯ ψ )( ∂ µ ψ ) + i 2 X 2 ( ρ )( ∂ µ σ )[ ¯ ∂ψ − ( ∂ µ ¯ ψ ) γ µ ψ ] + X 3 ( ρ )( ∂ 2 σ ) ¯ ψ/ ψψ + 1 2 X 4 ( ρ )( ∂ µ σ )[ ¯ ψ Σ µν ∂ ν ψ − ( ∂ ν ¯ ψ )Σ µν ψ ] + 1 � 3 ( ρ )]( ∂ µ σ ) 2 σ ¯ 2 [ X 5 ( ρ ) + 2 X ′ ψψ • FRG LO: U ( ρ ) , h , Z ψ , Z σ (B RAUN ,HG,S CHERER ’10) • FRG LO’: U ( ρ ) , h ( ρ ) , Z ψ , Z σ (V ACCA ,Z AMBELLI ’15) • FRG NLO (K NORR ’16) (+regulator optimization, + pseudospectral solver + X A CT )

  32. FRG goes quantitative (K NORR ’16)

  33. FRG goes quantitative ✄ critical exponents N f = 2: FRG FRG FRG FRG FRG LO LO LO+ps LO’ NLO iGN rGN rGN rGN rGN (HNW’02) (BGS’10) (BK’15) (VZ’15) (K’16) ν 1.018 1.018 1.018 1.004 1.006(2) η σ 0.756 0.760 0.760 0.789 0.7765 η ψ 0.032 0.032 0.032 0.031 0.0276 (H OFLING ,N OWAK ,W ETTERICH ’02; B RAUN ,HG,S CHERER ’10; B ORCHARDT ,K NORR ’15; V ACCA ,Z AMBELLI ’15; K NORR ’16) = ⇒ satisfactory apparent convergence FRG performs rather well already at LO

  34. FRG goes quantitative ✄ critical exponents N f = 2: method comparison FRG MC 1 / N f 2 + ǫ 2 + ǫ 4 − ǫ 2-sided Padé 3rd 4th +res. 2nd NLO (K’16) (KLLP’94) (G’94;HJ’14) (G’90’91;LR’91) (GLS’16) (RYK’93) (FGKT’16) ν 1.006(2) 1.00(4) 1.04 1.309 1.074 0.948 1.055 η σ 0.7765 0.754(8) 0.776 0.602 0.745 0.695 0.739 η ψ 0.0276 – 0.044 0.081 0.082 0.065 0.041 (K NORR ’16) (K ARKKAINEN ,L ACAZE ,L ACOCK ,P ETERSSON ’94) (G RACEY ’94; H ERBUT ,J ANSSEN ’14) (G RACEY ’90’91; L UPERINI ,R OSSI ’91) (G RACEY ,L UTH ,S CHRODER ’16) (R OSENSTEIN ,Y U ,K OVNER ’93) (F EI ,G IOMBI ,K LEBANOV ,T ARNOPOLSKY ’16) (P OSTER : B. I HRIG ) = ⇒ acceptable overall agreement with minor exceptions

  35. FRG goes quantitative ✄ critical exponents N f = 1: method comparison

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend