free pressure free entropy and hypothesis testing
play

Free pressure, free entropy and hypothesis testing Fumio Hiai - PowerPoint PPT Presentation

Free pressure, free entropy and hypothesis testing Fumio Hiai (Tohoku University) 2008, January (at Banff) 1 Plan 1. Hypothesis testing: conventional framework 2. Free pressure and free entropy: microstate approach 3. Free analog of


  1. Free pressure, free entropy and hypothesis testing Fumio Hiai (Tohoku University) 2008, January (at Banff) 1

  2. Plan 1. Hypothesis testing: conventional framework 2. Free pressure and free entropy: microstate approach 3. Free analog of hypothesis testing – free Stein’s lemma 4. The single variable case 2

  3. 1. Hypothesis testing: conventional frame- work • ( H n ): a sequence of finite-dimensional Hilbert spaces • ρ n , σ n : states on H n • Null-hypothesis (H0): the true state of the n th system is ρ n • Counter-hypothesis (H1): the true state of the n th system is σ n • Test: binary measurement 0 ≤ T n ≤ I on H n T n corresponds to outcome 0, I − T n corresponds to outcome 1 outcome = 0: (H0) is accepted, outcome = 1: (H1) is accepted • Error probabilities of the first/second kinds: α n ( T n ) := ρ n ( I n − T n ) , β n ( T n ) := σ n ( T n ) 3

  4. Bayesian error probabilities • ρ n and σ n have a priori probabilities π n and 1 − π n • Optimal Bayesian probability of an erroneous decision: � � P min ( ρ n : σ n | π n ) := min π n α n ( T n ) + (1 − π n ) β n ( T n ) 0 ≤ T n ≤ I Results for i.i.d. case ρ n = ρ ⊗ n σ n = σ ⊗ n • I.i.d. setting: H n = H ⊗ n , 1 , 1 1 σ 1 − t • Rate function: ψ ( t ) := log Tr ρ t , ϕ ( a ) := max 0 ≤ t ≤ 1 { at − ψ ( t ) } 1 Stein’s lemma (H-Petz, 1991; Ogawa-Nagaoka, 2000) 1 lim n log min { β n ( T n ) : α n ( T n ) ≤ ε } = − S ( ρ 1 , σ 1 ) for any 0 < ε < 1 . n →∞ 4

  5. Chernoff bound (Audenaert-Calsamiglia-et al., Nussbaum-Szko� la, 2006) 1 lim n log P min ( ρ n : σ n | π ) = min 0 ≤ t ≤ 1 ψ ( t ) = − ϕ (0) n →∞ Hoeffding bound (Hayashi, Nagaoka, 2006) For any r ∈ R , � � 1 1 − tr − ψ ( t ) inf lim sup n log β n ( T n ) : lim sup n log α n ( T n ) < − r = − max . 1 − t n n 0 ≤ t< 1 ( T n ) Results for non-i.i.d. case H-Mosonyi-Ogawa • Large deviations and Chernoff bound for certain correlated states on the spin chain, J. Math. Phys. • Error exponents in hypothesis testing for correlated states on a spin chain, J. Math. Phys. 5

  6. 2. Free pressure and free entropy: microstate approach � � A ∈ M N ( C ) : A = A ∗ , � A � ≤ R • For R > 0, ( M sa N ) R := = R N 2 N ∼ • Λ N : the “Lebesgue” measure on M sa • A ( n ) := C ([ − R, R ]) ⋆n : the n -fold universal free product C ∗ -algebra, R i.e., the C ∗ -completion of C � X 1 , . . . , X n � w.r.t. the norm � � � p ( A 1 , . . . , A n ) � : A 1 , . . . , A n ∈ ( M sa � p � R := sup N ) R , N ∈ N • TS ( A ( n ) R ): the set of tracial states on A ( n ) R 6

  7. • Free entropy: for µ ∈ TS ( A ( n ) R ), � � 1 N (Γ R ( µ ; N, m, δ )) + n N 2 log Λ ⊗ n χ R ( µ ) := m →∞ ,δ ց 0 lim sup lim 2 log N N →∞ for h ∈ ( A ( n ) R ) sa (considered as a free • Free pressure (free energy): probabilistic potential), � 1 � � − N 2 tr N ( h ( A 1 , . . . , A n )) � π R ( h ) := lim sup N 2 log exp ( M sa N ) n N →∞ R � N ( A 1 , . . . , A n ) + n d Λ ⊗ n 2 log N • η -version of free entropy: for µ ∈ TS ( A ( n ) R ), µ ( h ) + π R ( h ) : h ∈ ( A ( n ) � R ) sa � η R ( µ ) := inf , the (minus) Legendre transform of π R . 7

  8. • For every h 0 ∈ ( A ( n ) R ) sa , − µ ( h 0 ) + η R ( µ ) : µ ∈ TS ( A ( n ) � � π R ( h 0 ) = max R ) . µ 0 ∈ TS ( A ( n ) R ) is called an equilibrium tracial state associated with h 0 if π R ( h 0 ) = − µ 0 ( h 0 ) + η R ( µ 0 ) . An equilibrium tracial state exists for every h ∈ ( A ( n ) Note R ) sa , and is unique for almost all h ∈ ( A ( n ) R ) sa (i.e., in a dense G δ subset) by the Baire category theorem. But it is not easy to prove the uniqueness for a given h . Fact η R ( µ ) ≥ χ R ( µ ) and equality holds if X 1 , . . . , X n are free w.r.t. µ . 8

  9. 3. Free analog of hypothesis testing – free Stein’s lemma • Micro Gibbs measure: for h ∈ ( A ( n ) R ) sa and N ∈ N , 1 − N 2 tr N ( h ( A 1 , . . . , A n )) dλ h � � R,N ( A 1 , . . . , A n ) := exp Z h R,N R ( A 1 , . . . , A n ) d Λ ⊗ n × χ ( M sa N ( A 1 , . . . , A n ) N ) n with normalization constant Z h R,N . • Micro pressure: for h ∈ ( A ( n ) R ) sa , P R,N ( h ) := log Z h R,N � � − N 2 tr N ( h ( A 1 , . . . , A n )) � d Λ ⊗ n = log exp N ( A 1 , . . . , A n ) ( M sa N ) n R • N -level tracial state: for each h 0 ∈ ( A ( n ) R ) sa , µ h 0 R,N ∈ TS ( A ( n ) R ) is defined by � for h ∈ A ( n ) µ h 0 tr N ( h ( A 1 , . . . , A n )) dλ h 0 R,N ( h ) := R,N ( A 1 , . . . , A n ) R . ( M sa N ) n R 9

  10. Fact If limit exists in the definition of π R ( h 0 ), i.e., � � 1 N 2 P R,N ( h 0 ) + n π R ( h 0 ) = lim 2 log N , N →∞ then any limit point of ( µ h 0 R,N ) N ∈ N is an equilibrium tracial state associ- ated with h 0 . ————————— Let h 0 , h 1 ∈ ( A ( n ) R ) sa and consider the hypothesis testing for ( λ h 0 ( λ h 1 R,N ) N ∈ N (null-hypothesis) vs. R,N ) N ∈ N (counter-hypothesis) . For a Borel subset (test) T ⊂ ( M sa N ) n R , α N ( T ) := λ h 0 β N ( T ) := λ h 1 R,N ( T c ) , R,N ( T ) . 10

  11. For the free Stein’s lemma, define for 0 < ε < 1 β ε ( λ h 1 R,N � λ h 0 λ h 0 R , λ h 1 � R,N ( T ) : T ⊂ ( M sa N ) n R,N ( T c ) ≤ ε � R,N ) := min N ∈ N , , � � 1 B (( λ h 1 R,N ) � ( λ h 0 N 2 log λ h 0 N →∞ λ h 1 R,N ( T c R,N )) := inf lim inf R,N ( T N ) : lim N ) = 0 , N →∞ ( T N ) � � 1 B (( λ h 1 R,N ) � ( λ h 0 N 2 log λ h 0 N →∞ λ h 1 R,N ( T c R,N )) := inf lim sup R,N ( T N ) : lim N ) = 0 , ( T N ) N →∞ � � 1 B (( λ h 1 R,N ) � ( λ h 0 N 2 log λ h 0 N →∞ λ h 1 R,N ( T c R,N )) := inf lim R,N ( T N ) : lim N ) = 0 . N →∞ ( T N ) � � 1 N 2 log β ε ( λ h 1 R,N � λ h 0 = B (( λ h 1 R,N ) � ( λ h 0 sup lim inf R,N ) R,N )) N →∞ ε> 0 � � 1 ≤ B (( λ h 1 R,N ) � ( λ h 0 N 2 log β ε ( λ h 1 R,N � λ h 0 R,N )) = sup lim sup R,N ) ε> 0 N →∞ 11

  12. Theorem Assume that there is a unique equilibrium tracial state µ h 1 associated with h 1 . Then for every 0 < ε < 1, 1 N 2 log β ε ( λ h 1 R,N � λ h 0 lim sup R,N ) ≥ η R ( µ h 1 ) − µ h 1 ( h 0 ) − π R ( h 0 ) N →∞ ≥ χ R ( µ h 1 ) − µ h 1 ( h 0 ) − π R ( h 0 ) . If, moreover, limit exists in the definition of π R ( h 1 ), then for every 0 < ε < 1, 1 N 2 log β ε ( λ h 1 R,N � λ h 0 lim inf R,N ) ≥ η R ( µ h 1 ) − µ h 1 ( h 0 ) − π R ( h 0 ) . N →∞ Theorem Assume that limit exists in the definition of π R ( h 1 ). Then for any limit point µ of ( µ h 1 R,N ) N ∈ N , B (( λ h 1 R,N ) � ( λ h 0 R,N )) ≥ η R ( µ ) − µ ( h 0 ) − π R ( h 0 ) . Moreover, there exists a limit point µ 1 of ( µ h 1 R,N ) N ∈ N such that B (( λ h 1 R,N ) � ( λ h 0 R,N )) ≥ η R ( µ 1 ) − µ 1 ( h 0 ) − π R ( h 0 ) . 12

  13. In particular when h 0 = 0, the theorems give Let h ∈ ( A ( n ) R ) sa and assume that there is a unique equilibrium Cor. tracial state µ h associated with h . Then χ R ( µ h ) ≤ η R ( µ h ) � � 1 + n � �� Λ ⊗ n � N ( T ) : T ⊂ ( M sa N ) n R , λ h R,N ( T c ) ≤ ε ≤ lim sup N 2 log min 2 log N N →∞ for every 0 < ε < 1. If, moreover, limit exists in the definition of π R ( h ), then for every 0 < ε < 1, η R ( µ h ) � � 1 + n � �� � Λ ⊗ n N ( T ) : T ⊂ ( M sa N ) n R , λ h R,N ( T c ) ≤ ε ≤ lim inf N 2 log min 2 log N . N →∞ 13

  14. Let h ∈ ( A ( n ) R ) sa and assume that limit exists in the definition of Cor. π R ( h ). Then for any limit point µ of ( µ h R,N ) N ∈ N , η R ( µ ) � � � � 1 N ( T N ) + n N 2 log Λ ⊗ n N →∞ λ h R,N ( T c ≤ inf lim sup 2 log N : lim N ) = 0 . ( T N ) N →∞ Moreover, for some limit point µ 1 of ( µ h R,N ) N ∈ N , η R ( µ 1 ) � � � � 1 N ( T N ) + n N 2 log Λ ⊗ n N →∞ λ h R,N ( T c ≤ inf lim inf 2 log N : lim N ) = 0 . N →∞ ( T N ) ————————— Let h 0 ∈ ( A ( n ) R ) sa . For each ( A , . . . , A n ) ∈ ( M sa N ) n R define h ∈ A ( n ) µ N, ( A 1 ,...,A n ) ( h ) := tr N ( h ( A 1 , . . . , A n )) , R , which is a random tracial state when ( A 1 , . . . , A n ) is distributed under λ h 0 R,N . 14

  15. Fact (1) If the random tracial state µ N, ( A 1 ,...,A n ) satisfies LDP in the scale N − 2 with a good rate function having a unique minimizer µ 0 , then µ N, ( A 1 ,...,A n ) weakly* converges to µ 0 almost surely and so λ h 0 R,N (Γ R ( µ 0 ; N, m, δ )) → 1 as N → ∞ for every m ∈ N and δ > 0. (2) If λ h 0 R,N (Γ R ( µ 0 ; N, m, δ )) → 1 as N → ∞ for every m ∈ N and δ > 0, then µ h 0 R,N → µ 0 weakly* as N → ∞ . Cor In addition to the assumption of (2), assume (i) µ 0 is a unique equilibrium tracial state associated with h 0 , or (ii) limit exists in the definition of π R ( h 0 ). Then η R ( µ 0 ) = χ R ( µ 0 ). Moreover, in the case (ii), µ 0 is regular. 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend