fr chet distance between uncertain trajectories
play

Frchet Distance Between Uncertain Trajectories Computing Expected - PowerPoint PPT Presentation

Frchet Distance Between Uncertain Trajectories Computing Expected Value and Upper Bound Kevin Buchin 1 Maarten Lffler 2 Aleksandr Popov 1 Marcel Roeloffzen 1 1 Department of Mathematics and Computer Science Eindhoven University of Technology 2


  1. Fréchet Distance Between Uncertain Trajectories Computing Expected Value and Upper Bound Kevin Buchin 1 Maarten Löffler 2 Aleksandr Popov 1 Marcel Roeloffzen 1 1 Department of Mathematics and Computer Science Eindhoven University of Technology 2 Department of Information and Computing Sciences Utrecht University 16th March 2020

  2. Why (uncertain) trajectories? K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 2 / 15

  3. Why (uncertain) trajectories? K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 2 / 15

  4. Why (uncertain) trajectories? K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 2 / 15

  5. Why (uncertain) trajectories? K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 2 / 15

  6. Why (uncertain) trajectories? K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 2 / 15

  7. Why (uncertain) trajectories? K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 2 / 15

  8. Why (uncertain) trajectories? K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 2 / 15

  9. Uncertain trajectories Measurement uncertainty, regions connected with line segments. K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 3 / 15

  10. Uncertain trajectories Measurement uncertainty, regions connected with line segments. Indecisive point: ℓ options per point ℓ = 3 K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 3 / 15

  11. Uncertain trajectories Measurement uncertainty, regions connected with line segments. Indecisive point: Imprecise point: ℓ options per point Connected region ℓ = 3 circle K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 3 / 15

  12. Similarity measures Discrete Fréchet distance and continuous Fréchet distance: K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 4 / 15

  13. Similarity measures Discrete Fréchet distance and continuous Fréchet distance: K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 4 / 15

  14. Similarity measures Discrete Fréchet distance and continuous Fréchet distance: K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 4 / 15

  15. Similarity measures Discrete Fréchet distance and continuous Fréchet distance: K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 4 / 15

  16. Similarity measures Discrete Fréchet distance and continuous Fréchet distance: K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 4 / 15

  17. Similarity measures Discrete Fréchet distance and continuous Fréchet distance: K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 4 / 15

  18. Similarity measures Discrete Fréchet distance and continuous Fréchet distance: K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 4 / 15

  19. Similarity measures Discrete Fréchet distance and continuous Fréchet distance: K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 4 / 15

  20. Fréchet distance on uncertain trajectories Lower bound? Upper bound? Expected value? K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 5 / 15

  21. Fréchet distance on uncertain trajectories Lower bound? Upper bound? Expected value? K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 5 / 15

  22. Fréchet distance on uncertain trajectories Lower bound? Upper bound? Expected value? K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 5 / 15

  23. Fréchet distance on uncertain trajectories Lower bound? Upper bound? Expected value? K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 5 / 15

  24. Overview imprecise indecisive disks line segments LB Polynomial* Polynomial* Polynomial* discrete FD UB NP-complete NP-complete NP-complete Exp #P-hard — #P-hard Polynomial † NP-complete † LB — FD UB NP-complete NP-complete NP-complete Exp #P-hard — — * Ahn et al., 2012. † Joint work with Fan and Raichel, submitted. K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 6 / 15

  25. Overview imprecise indecisive disks line segments LB Polynomial* Polynomial* Polynomial* discrete FD UB NP-complete NP-complete NP-complete Exp #P-hard — #P-hard Polynomial † NP-complete † LB — FD UB NP-complete NP-complete NP-complete Exp #P-hard — — * Ahn et al., 2012. † Joint work with Fan and Raichel, submitted. K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 6 / 15

  26. Overview imprecise indecisive disks line segments LB Polynomial* Polynomial* Polynomial* discrete FD UB NP-complete NP-complete NP-complete Exp #P-hard — #P-hard Polynomial † NP-complete † LB — FD UB NP-complete NP-complete NP-complete Exp #P-hard — — * Ahn et al., 2012. † Joint work with Fan and Raichel, submitted. Indecisive: Polynomial-time algorithms with time bands for all cases. K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 6 / 15

  27. Hardness results K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 7 / 15

  28. Construction: Indecisive, discrete FD, upper bound ( 0 , 0 . 5 + ε) T Reduction from SAT. Two curves: ( 0 , 0 . 5 ) F ◮ Precise curve: formula structure; ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) N/A ( − 2 , 0 ) ( 2 , 0 ) ◮ Indecisive curve: ( 0 , − 0 . 5 ) T variable synchronisation synchronisation assignment. ( 0 , − 0 . 5 − ε) F x = 0 K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 8 / 15

  29. Construction: Indecisive, discrete FD, upper bound ( 0 , 0 . 5 + ε) T Reduction from SAT. Two curves: ( 0 , 0 . 5 ) F ◮ Precise curve: formula structure; ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) N/A ( − 2 , 0 ) ( 2 , 0 ) ◮ Indecisive curve: ( 0 , − 0 . 5 ) T variable synchronisation synchronisation assignment. ( 0 , − 0 . 5 − ε) F x = 0 K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 8 / 15

  30. Construction: Indecisive, discrete FD, upper bound ( 0 , 0 . 5 + ε) T Reduction from SAT. Two curves: ( 0 , 0 . 5 ) F ◮ Precise curve: formula structure; ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) N/A ( − 2 , 0 ) ( 2 , 0 ) ◮ Indecisive curve: ( 0 , − 0 . 5 ) T variable synchronisation synchronisation assignment. ( 0 , − 0 . 5 − ε) F x = 0 K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 8 / 15

  31. Construction: Indecisive, discrete FD, upper bound ( 0 , 0 . 5 + ε) T Reduction from SAT. Two curves: ( 0 , 0 . 5 ) F ◮ Precise curve: formula structure; ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) N/A ( − 2 , 0 ) ( 2 , 0 ) ◮ Indecisive curve: ( 0 , − 0 . 5 ) T variable synchronisation synchronisation assignment. ( 0 , − 0 . 5 − ε) F x = 0 K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 8 / 15

  32. Construction: example ( 0 , 0 . 5 + ε) ( 0 , 0 . 5 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( − 2 , 0 ) ( 2 , 0 ) ( 0 , − 0 . 5 ) ( 0 , − 0 . 5 − ε) C = x 1 ∨ x 2 Realisation: x 1 = T, x 2 = F, x 3 = F. K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 9 / 15

  33. Construction: example ( 0 , 0 . 5 + ε) ( 0 , 0 . 5 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( − 2 , 0 ) ( 2 , 0 ) ( 0 , − 0 . 5 ) ( 0 , − 0 . 5 − ε) C = x 1 ∨ x 2 Realisation: x 1 = T, x 2 = F, x 3 = F. K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 9 / 15

  34. Construction: example ( 0 , 0 . 5 + ε) ( 0 , 0 . 5 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( − 2 , 0 ) ( 2 , 0 ) ( 0 , − 0 . 5 ) ( 0 , − 0 . 5 − ε) C = x 1 ∨ x 2 Realisation: x 1 = T, x 2 = F, x 3 = F. K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 9 / 15

  35. Construction: example ( 0 , 0 . 5 + ε) ( 0 , 0 . 5 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( − 2 , 0 ) ( 2 , 0 ) ( 0 , − 0 . 5 ) ( 0 , − 0 . 5 − ε) C = x 1 ∨ x 2 Realisation: x 1 = T, x 2 = F, x 3 = F. K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 9 / 15

  36. Construction: Indecisive, discrete FD, upper bound C 1 C 2 C 3 C 4 C 5 1 + ε 1 1 1 1 1 1 1 1 1 V ( 0 , 0 ) ( 0 , 0 ) K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 10 / 15

  37. Construction: Indecisive, discrete FD, upper bound C 1 C 2 C 3 C 4 C 5 1 + ε 1 1 1 1 1 1 1 1 1 V ( 0 , 0 ) ( 0 , 0 ) C 4 = F K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 10 / 15

  38. Construction: Indecisive, discrete FD, upper bound C 1 C 2 C 3 C 4 C 5 1 + ε 1 1 1 1 1 1 1 1 1 V ( 0 , 0 ) ( 0 , 0 ) C i = T for all i K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 10 / 15

  39. Hardness results imprecise indecisive disks line segments UB NP-complete NP-complete NP-complete discrete FD Exp #P-hard — #P-hard UB NP-complete NP-complete NP-complete FD Exp #P-hard — — K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 11 / 15

  40. Algorithms using time bands K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 12 / 15

  41. Time bands: idea K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 13 / 15

  42. Time bands: idea K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 13 / 15

  43. Time bands: idea w = 1 K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 13 / 15

  44. Time bands: results Time band width w , indecisive trajectories with ℓ options, length n : K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 14 / 15

  45. Time bands: results Time band width w , indecisive trajectories with ℓ options, length n : ◮ UB dFD precise + indecisive: Θ ( 4 w ℓ n √ w ) ; K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 14 / 15

  46. Time bands: results Time band width w , indecisive trajectories with ℓ options, length n : ◮ UB dFD precise + indecisive: Θ ( 4 w ℓ n √ w ) ; ◮ UB dFD 2x indecisive: Θ ( 4 w ℓ 2 w n √ w ) ; K. Buchin, M. Löffler, A. Popov, M. Roeloffzen 14 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend