formalizing termination proofs under polynomial quasi
play

Formalizing Termination Proofs under Polynomial - PowerPoint PPT Presentation

Formalizing Termination Proofs under Polynomial Quasi-interpretations Naohi Eguchi 1 Chiba University July 5, 2015, LCC 2015, Kyoto, Japan 1 Supported by Grants-in-Aid for JSPS fellows (No. 25 726 ) Naohi Eguchi (Chiba) Formalizing


  1. Formalizing Termination Proofs under Polynomial Quasi-interpretations Naohi Eguchi 1 Chiba University July 5, 2015, LCC 2015, Kyoto, Japan 1 Supported by Grants-in-Aid for JSPS fellows (No. 25 · 726 ) Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 1 / 21

  2. Overview 1/2 Primitive-, Multiply Recursive Functions (Peano) Arithmetic Term Rewriting Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 2 / 21

  3. Overview 1/2 Primitive-, Multiply Recursive Functions Hofbauer ’92, Parsons ’70 Weiermann ’95 (Peano) Arithmetic Term Rewriting Buchholz ’95 Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 3 / 21

  4. Overview 2/2 Poly-time-, Poly-space Functions Bonfante- Marion-Moyen ’11, ’01 Buss ’86 Term Rewriting Bounded Arithmetic Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 4 / 21

  5. Overview 2/2 Poly-time-, Poly-space Functions Bonfante- Marion-Moyen ’11, ’01 Buss ’86 Term Rewriting Bounded Arithmetic This work Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 5 / 21

  6. First order functional programs (Term rewrite systems) 1 Multiset path orders (MPOs), Lexicographic path orders (LPOs) 2 Optimal formalizations of MPO-, LPO-termination proofs 3 (Buchholz ’95) Polynomial quasi-interpretations (PQIs) 4 An optimal formalization of LPO-termination proofs under PQIs 5 (This work) Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 6 / 21

  7. First order functional programs: Syntax Syntax: variable x ∈ V signature (finite) F := C ⊎ D constructor c ∈ C defined symbol f ∈ D term t := x | c ( t 1 , . . . , t k ) | f ( t 1 , . . . , t k ) ∈ T ( F , V ) constructor term s := x | c ( s 1 , . . . , s k ) ∈ T ( C , V ) basic term u := f ( s 1 , . . . , s k ) ∈ B ( F , V ) reduction rule u → t Var ( t ) ⊆ Var ( u ) Program R : finite set of reduction rules i − → R : innermost reduction under R i i − → ∗ R : reflexive and transitive closure − → R i i → ! → ∗ t − R s ⇔ t − R s ∈ NF ( R ) (normal form under R ) Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 7 / 21

  8. First order functional programs: Semantics Semantics: ] : T ( C ) k → T ( C ) ( f ∈ D ) iff R computes the function [ | f | i → ! ∀ s 1 , . . . , s k ∈ T ( C ) , ∃ ! s ∈ T ( C ) s.t. f ( s 1 , . . . , s k ) − R s. Necessary: i → ! R : (innermost) terminating: ∀ t ∈ B ( F ) , ∃ s s.t. t − R s 1 R : confluent 2 R : quasi-reducible (QR): any (closed) basic term is reducible 3 Termination criterion R : terminating if ∃�A , ≺� : well-founded, ∃ ( | · | ) : T ( F ) → A s.t. ( ∀ l → r ∈ R )( ∀ θ : V → T ( C ))( | rθ | ) ≺ ( | lθ | ) Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 8 / 21

  9. First order functional programs (Term rewrite systems) 1 Multiset path orders (MPOs), Lexicographic path orders (LPOs) 2 Optimal formalizations of MPO-, LPO-termination proofs 3 (Buchholz ’95) Polynomial quasi-interpretations (PQIs) 4 An optimal formalization of LPO-termination proofs under PQIs 5 (This work) Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 9 / 21

  10. Recursive path orders This work is concerned with a more specific case: ∃ < rpo : recursive path order s.t. ( ∀ l → r ∈ R ) l > rpo r ( R ⊆ > rpo ) Definition (Recursive path orders with status) s < rpo t := g ( t 1 , . . . , t l ) iff x � rpo t i for some i ∈ { 1 , . . . , l } , or 1 s = f ( s 1 , . . . , s k ) , rk ( f ) < rk ( g ) and s 1 , . . . , s k < rpo t , or 2 s = g ( s 1 , . . . , s l ) and ( s 1 , . . . , s l ) < τ ( g ) rpo ( t 1 , . . . , t l ) , where 3 τ : F → { prod , mul , lex } is a status function. Definition (Multiset-, lexicographic path orders) < mpo : < rpo with mul status only 1 < lpo : < rpo with lex status only 2 Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 10 / 21

  11. First order functional programs (Term rewrite systems) 1 Multiset path orders (MPOs), Lexicographic path orders (LPOs) 2 Optimal formalizations of MPO-, LPO-termination proofs 3 (Buchholz ’95) Polynomial quasi-interpretations (PQIs) 4 An optimal formalization of LPO-termination proofs under PQIs 5 (This work) Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 11 / 21

  12. Formalizations of MPO-, LPO-termination proofs Theorem (Buchholz ’95) IΣ 1 ⊢ “ R ⊆ > mpo ⇒ R is terminating ′′ 1 ( IΣ 1 : Peano arithmetic with induction restricted to c.e. sets) IΣ 2 ⊢ “ R ⊆ > lpo ⇒ R is terminating ′′ 2 ( IΣ 2 : induction restricted to “ f is total” for some computable f ) Corollary Computable by MPO-terminating programs ⇒ primitive rec. 1 Computable by LPO-terminating programs ⇒ multiply recursive 2 These results are optimal because: Primitive rec. ⇒ computable by MPO-terminating programs 1 Multiply rec. ⇒ computable by LPO-terminating programs 2 Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 12 / 21

  13. First order functional programs (Term rewrite systems) 1 Multiset path orders (MPOs), Lexicographic path orders (LPOs) 2 Optimal formalizations of MPO-, LPO-termination proofs 3 (Buchholz ’95) Polynomial quasi-interpretations (PQIs) 4 An optimal formalization of LPO-termination proofs under PQIs 5 (This work) Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 13 / 21

  14. Quasi-interpretations ) : N k → N for each k -ary f ∈ F : Associate a quasi-interpretation ( | f | m < n ⇒ ( | f | )( · · · m · · · ) ≤ ( | f | )( · · · n · · · ) (e.g. m < n ⇒ max( m, m ′ ) ≤ max( n, m ′ ) ) Extend to T ( F ) : ( | f ( t 1 , . . . , t k ) | ) := ( | f | )(( | t 1 | ) , . . . , ( | t k | )) Definition R admits a quasi-interpretation ( | · | ) if 1 ( ∀ l → r ∈ R )( ∀ θ : V → T ( C ))( | rθ | ) ≤ ( | lθ | ) . R : LPO Poly (0) -program if R : LPO-terminating & admits a 2 (kind 0 ) polynomially-bounded quasi-interpretation (PQI) Theorem (Bonfante-Marion-Moyen ’01) Computable by LPO Poly (0) -programs ⇔ polynomial-space computable Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 14 / 21

  15. First order functional programs (Term rewrite systems) 1 Multiset path orders (MPOs), Lexicographic path orders (LPOs) 2 Optimal formalizations of MPO-, LPO-termination proofs 3 (Buchholz ’95) Polynomial quasi-interpretations (PQIs) 4 An optimal formalization of LPO-termination proofs under PQIs 5 (This work) Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 15 / 21

  16. Difficulty Theorem (Buchholz ’95) IΣ 2 ⊢ “ R ⊆ > lpo ⇒ R is terminating ′′ Lemma IΣ 2 ⊢ “ R ⊆ > lpo ⇒ ∀ t ∈ T ( F ) , the reduction tree T rooted at t is well-founded ′′ Problem: size ( T ) ≈ 2 depth ( T ) Polynomial-space is not closed under m �→ 2 m The same argument does not yields the poly-space complexity Something smaller in size than reduction trees seems necessary = ⇒ Minimal function graph Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 16 / 21

  17. Minimal function graphs (Jones ’97, Marion ’03) Minimal function graph G R ( t ) ⊆ B ( F ) × T ( C ) ( t ∈ B ( F )) : i → ! G R ( t ) ⊆ {� u, v � | u − R v } & ∃ s ∈ T ( C ) s.t. � t, s � ∈ G R ( t ) How to construct minimal function graphs: Let t ∈ B ( F ) 1 ∃ l → r ∈ R , ∃ θ : V → T ( C ) s.t. t = lθ (if R : quasi-reducible) 2 Let u ✁ rθ & u ∈ B ( F ) ( u is a basic sub-term of rθ ) 3 Construction of G R ( t ) depends on G R ( u ) 4 u < lpo lθ = t (if R ⊆ > lpo ) 5 � � ( ∀ t ∈ B ( F )) ( ∀ u < lpo t ) ∃ G R ( u ) → ∃ G R ( t ) 6 Thus it suffices to deduce TI ∃ G R ( < lpo ) : � � ( ∀ t ∈ B ( F )) ( ∀ s < lpo t ) ∃ G R ( s ) → ∃ G R ( t ) → ( ∀ t ∈ B ( F )) ∃ G R ( t ) Suitable framework: weak enough so that m �→ 2 m is not definable U 1 2 : 2nd order Bounded arithmetic corresponding to PSPACE Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 17 / 21

  18. Main result U 1 � � 2 : axiomatized with ϕ (0) ∧ ∀ m ϕ ( ⌊ m/ 2 ⌋ ) → ϕ ( m ) → ∀ mϕ ( m ) ( ϕ ( · ) : Σ b , 1 1 -formula including ∃ G R ( · ) ) Lemma 2 ⊢ “ R : QR & R ⊆ > lpo & R admits a PQI ′′ → TI ∃ G R ( < lpo ) U 1 Theorem 2 ⊢ “ R : QR & LPO Poly (0) ′′ → ( ∀ t ∈ B ( F )) ∃ G R ( t ) U 1 i → ! By Buss’ theorem ∃ f : poly-space s.t. ∀ t ∈ B ( F ) , t − R f ( t ) . Hence: Corollary Computable by quasi-reducible LPO Poly (0) -programs ⇒ polynomial-space computable Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 18 / 21

  19. Summary Polynomial-space Computable Functions Bonfante- Marion- Moyen ’01 Buss ’86 Bounded Arithmetic U 1 Term Rewriting LPO Poly (0) 2 Naohi Eguchi (Chiba) Formalizing Termination Proofs under PQIs July 5, 2015, LCC 2015 19 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend