flavorful leptogenesis and collider signals
play

Flavorful Leptogenesis and Collider Signals Bhupal Dev Washington - PowerPoint PPT Presentation

Flavorful Leptogenesis and Collider Signals Bhupal Dev Washington University in St. Louis Matter over Antimatter: The Sakharov Conditions After 50 Years Lorentz Center, Leiden May 10, 2017 Two parts: 1. Flavor-covariant formalism. BD, A.


  1. Flavorful Leptogenesis and Collider Signals Bhupal Dev Washington University in St. Louis Matter over Antimatter: The Sakharov Conditions After 50 Years Lorentz Center, Leiden May 10, 2017 Two parts: 1. Flavor-covariant formalism. BD, A. Pilaftsis, P . Millington, D. Teresi [1404.1003; 1410.6434; 1504.07640] 2. A predictive model based on flavor and CP symmetries. BD, C. Hagedorn, E. Molinaro (in prep).

  2. Leptogenesis [Fukugita, Yanagida ’86] A cosmological consequence of the seesaw mechanism. Naturally satisfies the Sakharov conditions. L violation due to the Majorana nature of heavy RH neutrinos. / L → / B through sphaleron interactions. New source of CP violation in the leptonic sector (through complex Dirac Yukawa couplings and/or PMNS CP phases). Departure from thermal equilibrium when Γ N � H . Bhupal Dev (Washington U.) Flavorful Leptogenesis Snellius Workshop 2 / 38

  3. For Pedestrians [Buchm¨ uller, Di Bari, Pl¨ umacher ’05] Generation of L asymmetry by heavy Majorana neutrino decay: 1 Partial washout of the asymmetry due to inverse decay (and scatterings): 2 Conversion of the left-over L asymmetry to B asymmetry at T > T sph . 3 Bhupal Dev (Washington U.) Flavorful Leptogenesis Snellius Workshop 3 / 38

  4. Boltzmann Equations [Buchm¨ uller, Di Bari, Pl¨ umacher ’02] dN N − ( D + S )( N N − N eq = N ) , dz dN ∆ L ε D ( N N − N eq = N ) − N ∆ L W , dz (where z = m N 1 / T and D , S , W = Γ D , S , W / Hz for decay, scattering and washout rates.) FInal baryon asymmetry: η ∆ B = d · ε · κ f d ≃ 28 1 27 ≃ 0 . 02 ( / L → / B conversion at T c + entropy dilution from T c to 51 recombination epoch). κ f ≡ κ ( z f ) is the final efficiency factor, where � z − � z D dN N z ′ dz ′′ W ( z ′′ ) dz ′ κ ( z ) = dz ′ e D + S z i Bhupal Dev (Washington U.) Flavorful Leptogenesis Snellius Workshop 4 / 38

  5. CP Asymmetry Φ † Φ † Φ † Φ L N β N α N α N α N α × × N β L × L C L C Φ L C l l l (a) (b) (c) tree self-energy vertex h l α | 2 − | � | � Γ( N α → L l Φ) − Γ( N α → L c l Φ c ) h c l α | 2 � k Φ c ) � ≡ ε l α = � ( � h † � h ) αα + ( � h c † � Γ( N α → L k Φ) + Γ( N α → L c h c ) αα k with the one-loop resummed Yukawa couplings [Pilaftsis, Underwood ’03] � � h l α = � | ǫ αβγ | � h l α − i h l β β,γ m α ( m α A αβ + m β A βα ) − iR αγ [ m α A γβ ( m α A αγ + m γ A γα ) + m β A βγ ( m α A γα + m γ A αγ )] × , α | A βγ | 2 + m β m γ Re ( A 2 m 2 α − m 2 β + 2 im 2 α A ββ + 2 i Im ( R αγ )[ m 2 βγ )] � m 2 1 A αβ ( � � h l α � α h ∗ R αβ = ; h ) = l β . m 2 α − m 2 β + 2 im 2 α A ββ 16 π l Bhupal Dev (Washington U.) Flavorful Leptogenesis Snellius Workshop 5 / 38

  6. Vanilla Leptogenesis Hierarchical heavy neutrino spectrum ( m N 1 ≪ m N 2 < m N 3 ). Both vertex correction and self-energy diagrams are relevant. For type-I seesaw, the maximal CP asymmetry is given by � m N 1 3 ε max = ∆ m 2 1 atm v 2 16 π Lower bound on m N 1 : [Davidson, Ibarra ’02; Buchm¨ uller, Di Bari, Pl¨ umacher ’02] � � � � η B 0 . 05 eV m N 1 > 6 . 4 × 10 8 GeV κ − 1 � f 6 × 10 − 10 ∆ m 2 atm Bhupal Dev (Washington U.) Flavorful Leptogenesis Snellius Workshop 6 / 38

  7. Vanilla Leptogenesis Hierarchical heavy neutrino spectrum ( m N 1 ≪ m N 2 < m N 3 ). Both vertex correction and self-energy diagrams are relevant. For type-I seesaw, the maximal CP asymmetry is given by � m N 1 3 ε max = ∆ m 2 1 atm v 2 16 π Lower bound on m N 1 : [Davidson, Ibarra ’02; Buchm¨ uller, Di Bari, Pl¨ umacher ’02] � � � � η B 0 . 05 eV m N 1 > 6 . 4 × 10 8 GeV κ − 1 � f 6 × 10 − 10 ∆ m 2 atm Experimentally inaccessible mass range! Also leads to a lower limit on the reheat temperature T rh � 10 9 GeV. In many supergravity scenarios, need T rh � 10 6 − 10 9 GeV to avoid the gravitino problem. [Khlopov, Linde ’84; Ellis, Kim, Nanopoulos ’84; Cyburt, Ellis, Fields, Olive ’02; Kawasaki, Kohri, Moroi, Yotsuyanagi ’08] Also in conflict with the Higgs naturalness bound m N � 10 7 GeV. [Vissani ’97; Clarke, Foot, Volkas ’15; Bambhaniya, BD, Goswami, Khan, Rodejohann ’16] Bhupal Dev (Washington U.) Flavorful Leptogenesis Snellius Workshop 6 / 38

  8. Resonant Leptogenesis L l ( k, r ) N α ( p, s ) � ε ε ′ Φ( q ) Dominant self-energy effects on the CP -asymmetry ( ε -type) [Flanz, Paschos, Sarkar ’95; Covi, Roulet, Vissani ’96] . Resonantly enhanced, even up to order 1, when ∆ m N ∼ Γ N / 2 ≪ m N 1 , 2 . [Pilaftsis ’97; Pilaftsis, Underwood ’03] The quasi-degeneracy can be naturally motivated as due to approximate breaking of some symmetry in the leptonic sector. Heavy neutrino mass scale can be as low as the EW scale. [Pilaftsis ’04; Pilaftsis, Underwood ’05] A testable scenario of leptogenesis, with implications at both Energy and Intensity Frontiers. [BD, Millington, Pilaftsis, Teresi ’14, ’15; BD, Hagedorn, Molinaro ’17 (in prep)] Bhupal Dev (Washington U.) Flavorful Leptogenesis Snellius Workshop 7 / 38

  9. Flavor-diagonal Resonant Leptogenesis � � � n γ H N d η N 1 − η N α α γ N α = L l Φ η N z d z eq l � � � � n γ H N d δη L η N α γ N α l = − 1 ε l α L k Φ η N z d z eq α k � �� � � − 2 3 δη L γ L l Φ k Φ c + γ L l Φ L k Φ + δη L γ L k Φ l Φ c − γ L k Φ l k L c L c L l Φ k L l ( k , r ) L k ( k , r ) b b N α ( p , s ) N β ( p , s ) [ b [ b c ] β h ˜ c ] l h ˜ α k Φ ( q ) Φ ( q ) L n ( k 2 , r 2 ) L k ( k 1 , r 1 ) [ L ˜ c ( k 2 , r 2 )] m L k ( k 1 , r 1 ) b h n [ b h ˜ c ] β [ b [ b c ] β h ˜ c ] β h ˜ β k m k b N β ( p ) b N β ( p ) Φ ( q 2 ) Φ ( q 1 ) Φ ˜ c ( q 2 ) Φ ( q 1 ) Bhupal Dev (Washington U.) Flavorful Leptogenesis Snellius Workshop 8 / 38

  10. Analytic Solution [Deppisch, Pilaftsis ’11] 10 4 N 1 10 5 10 6 N 10 7 L L , 10 8 10 9 z 1 z 2 z c z 3 10 10 10 2 10 1 10 0 10 1 10 2 z � � α ε l α 3 η L ( z ) ≃ ( z 2 < z < z 3 ) 2 z K eff l l Bhupal Dev (Washington U.) Flavorful Leptogenesis Snellius Workshop 9 / 38

  11. Flavordynamics of RL Important flavor effects in the time-evolution of lepton asymmetry in RL. [Abada, Davidson, Ibarra, Josse-Michaux, Losada, Riotto ’06; Nardi, Nir, Roulet, Racker ’06; Blanchet, Di Bari ’06; De Simone, Riotto ’06; Blanchet, Di Bari, Jones, Marzola ’12] M i � 10 12 GeV � 10 9 GeV M i � 10 12 GeV � 10 9 GeV Two sources of flavor effects: Heavy neutrino Yukawa couplings h α [Pilaftsis ’04; Endoh, Morozumi, Xiong ’04] l Charged lepton Yukawa couplings y k [Barbieri, Creminelli, Strumia, Tetradis ’00] l Three distinct physical phenomena: mixing, oscillation and decoherence. Bhupal Dev (Washington U.) Flavorful Leptogenesis Snellius Workshop 10 / 38

  12. Flavordynamics of RL Important flavor effects in the time-evolution of lepton asymmetry in RL. [Abada, Davidson, Ibarra, Josse-Michaux, Losada, Riotto ’06; Nardi, Nir, Roulet, Racker ’06; Blanchet, Di Bari ’06; De Simone, Riotto ’06; Blanchet, Di Bari, Jones, Marzola ’12] M i � 10 12 GeV � 10 9 GeV M i � 10 12 GeV � 10 9 GeV Two sources of flavor effects: Heavy neutrino Yukawa couplings h α [Pilaftsis ’04; Endoh, Morozumi, Xiong ’04] l Charged lepton Yukawa couplings y k [Barbieri, Creminelli, Strumia, Tetradis ’00] l Three distinct physical phenomena: mixing, oscillation and decoherence. Boltzmann approach: captured by ‘density matrix’ formalism. [Sigl, Raffelt ’93] Fully flavor-covariant formalism. [BD, Millington, Pilaftsis, Teresi ’14; ’15] Bhupal Dev (Washington U.) Flavorful Leptogenesis Snellius Workshop 10 / 38

  13. Flavor Transformations l � Φ N R ,α + 1 R ,α [ M N ] αβ N R ,β + H . c . . C −L N = h α L 2 N l Under U ( N L ) ⊗ U ( N N ) , L l ≡ ( L l ) † → L ′ l = V l m L m , L l → L ′ l = V m L m , l ≡ ( N R ,α ) † → N ′ α N R ,α → N ′ β N α = U α β N β R ,α = U N R ,β , . α R R R [ M N ] αβ → [ M ′ N ] αβ = U α δ [ M N ] γδ . h α → h ′ α = V m U α β γ U β β h , l l l m Bhupal Dev (Washington U.) Flavorful Leptogenesis Snellius Workshop 11 / 38

  14. Flavor Transformations l � Φ N R ,α + 1 R ,α [ M N ] αβ N R ,β + H . c . . C −L N = h α L 2 N l Under U ( N L ) ⊗ U ( N N ) , L l ≡ ( L l ) † → L ′ l = V l m L m , L l → L ′ l = V m L m , l ≡ ( N R ,α ) † → N ′ α N R ,α → N ′ β N α = U α β N β R ,α = U N R ,β , . α R R R [ M N ] αβ → [ M ′ N ] αβ = U α δ [ M N ] γδ . h α → h ′ α = V m U α β γ U β β h , l l l m Number densities: 1 [ n L s 1 s 2 ( p , t )] m � b m ( p , s 2 , ˜ t ) b l ( p , s 1 , ˜ ≡ t ) � t , l V 3 1 n L s 1 s 2 ( p , t )] m � d † l ( p , s 1 , ˜ t ) d † , m ( p , s 2 , ˜ [¯ ≡ t ) � t , l V 3 1 [ n N β � a β ( k , r 2 , ˜ t ) a α ( k , r 1 , ˜ ≡ t ) � t , r 1 r 2 ( k , t )] α V 3 ≡ 1 t ) G βδ a δ ( k , r 2 , ˜ n N β � G αγ a γ ( k , r 1 , ˜ [¯ r 1 r 2 ( k , t )] t ) � t , α V 3 Total number density: � � � � n N ( t ) ≡ n N n L ( t ) ≡ Tr n L rr ( k , t ) , ss ( p , t ) . iso k p r = − , + s = − , + Bhupal Dev (Washington U.) Flavorful Leptogenesis Snellius Workshop 11 / 38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend