fixing boolean networks asynchronously
play

Fixing Boolean networks asynchronously Juilio Aracena and Lilian - PowerPoint PPT Presentation

Fixing Boolean networks asynchronously Juilio Aracena and Lilian Salinas Universidad de Concepci on, Chile Maximilien Gadouleau Durham University, UK Adrien Richard CNRS, Universit e C ote dAzur, France S eminaire Dynamique,


  1. Fixing Boolean networks asynchronously Juilio Aracena and Lilian Salinas Universidad de Concepci´ on, Chile Maximilien Gadouleau Durham University, UK Adrien Richard CNRS, Universit´ e Cˆ ote d’Azur, France S´ eminaire “Dynamique, Arithm´ etique, Combinatoire” ´ Equipe I2M de l’IML Marseille, le 13 mars 2018 Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 1/37

  2. A Boolean network (BN) with n components is a function f : { 0 , 1 } n → { 0 , 1 } n x = ( x 1 , . . . , x n ) �→ f ( x ) = ( f 1 ( x ) , . . . , f n ( x )) . The dynamics is usually described by the successive iterations of f x → f ( x ) → f 2 ( x ) → f 3 ( x ) → · · · Fixed points correspond to stable states. Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 2/37

  3. Example with n = 3 x f ( x ) 000 000 001 110  f 1 ( x ) = x 2 ∨ x 3 010 101  f 2 ( x ) = x 1 ∧ x 3 011 110  f 3 ( x ) = x 3 ∧ ( x 1 ∨ x 2 ) 100 001 101 100 110 101 111 100 Dynamics 010 011 101 111 000 110 100 001 Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 3/37

  4. The interaction graph of f is the digraph G ( f ) on [ n ] := { 1 , . . . , n } s.t. j → i is an arc ⇐ ⇒ f i depends on x j . Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 4/37

  5. Example f ( x ) x 000 000  001 110 f 1 ( x ) = x 2 ∨ x 3  010 101 f 2 ( x ) = x 1 ∧ x 3 011 110 100 001  f 3 ( x ) = x 3 ∧ ( x 1 ∨ x 2 ) 101 100 110 101 111 100 Dynamics Interaction graph 010 1 2 011 101 111 3 000 110 100 001 Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 5/37

  6. Many applications , in particular: - Neural networks [McCulloch & Pitts 1943] - Gene networks [Kauffman 1969, Thomas 1973] - Network Coding [Riis 2007] Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 6/37

  7. Synchronous dynamics: all components are updated at each step: x → f ( x ) → f 2 ( x ) → f 3 ( x ) → · · · Asynchronous : one component is updated at each step. ֒ → Update component i at state x means reach the state i → f i ( x ) := ( x 1 , . . . , x i − 1 , f i ( x ) , x i +1 , . . . , x n ) . x − Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 7/37

  8. Synchronous dynamics: all components are updated at each step: x → f ( x ) → f 2 ( x ) → f 3 ( x ) → · · · Asynchronous : one component is updated at each step. ֒ → Update component i at state x means reach the state i → f i ( x ) := ( x 1 , . . . , x i − 1 , f i ( x ) , x i +1 , . . . , x n ) . x − The asynchronous graph Γ( f ) describes all the possible trajectories: the vertex set is { 0 , 1 } n and x → f i ( x ) for all x ∈ { 0 , 1 } n and i ∈ [ n ] . Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 7/37

  9. Synchronous dynamics: all components are updated at each step: x → f ( x ) → f 2 ( x ) → f 3 ( x ) → · · · Asynchronous : one component is updated at each step. ֒ → Update component i at state x means reach the state i → f i ( x ) := ( x 1 , . . . , x i − 1 , f i ( x ) , x i +1 , . . . , x n ) . x − The asynchronous graph Γ( f ) describes all the possible trajectories: the vertex set is { 0 , 1 } n and x → f i ( x ) for all x ∈ { 0 , 1 } n and i ∈ [ n ] . It can be regarded as a Finite Deterministic Automta where 1. the alphabet is Σ := [ n ] ; 2. the set of states is Q := { 0 , 1 } n ; 3. the transition function δ : Q × Σ → Q is δ ( x, i ) := f i ( x ) . Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 7/37

  10. Example 1 , 3 1 011 111 2 , 3 1 x f ( x ) 3 3 000 000 001 000 010 110 1 010 001 2 2 011 001 2 100 010 001 101 101 000 1 110 010 2 3 3 111 100 1 , 2 2 000 100 1 1 , 2 , 3 3 Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 8/37

  11. Notation: If w = i 1 i 2 . . . i k ∈ [ n ] ∗ then f w ( x ) is the state obtained from x by updating successively the components i 1 , i 2 , . . . , i k , that is, f w ( x ) := ( f i k ◦ f i k − 1 ◦ · · · ◦ f i 1 )( x ) . Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 9/37

  12. Notation: If w = i 1 i 2 . . . i k ∈ [ n ] ∗ then f w ( x ) is the state obtained from x by updating successively the components i 1 , i 2 , . . . , i k , that is, f w ( x ) := ( f i k ◦ f i k − 1 ◦ · · · ◦ f i 1 )( x ) . Definition 1. A word w ∈ [ n ] ∗ fixes f if ∀ x ∈ { 0 , 1 } n , f w ( x ) is a fixed point of f. The fixing length λ ( f ) is the min length of a word fixing f . Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 9/37

  13. Notation: If w = i 1 i 2 . . . i k ∈ [ n ] ∗ then f w ( x ) is the state obtained from x by updating successively the components i 1 , i 2 , . . . , i k , that is, f w ( x ) := ( f i k ◦ f i k − 1 ◦ · · · ◦ f i 1 )( x ) . Definition 1. A word w ∈ [ n ] ∗ fixes f if ∀ x ∈ { 0 , 1 } n , f w ( x ) is a fixed point of f. The fixing length λ ( f ) is the min length of a word fixing f . Definition 2. A word w fixes a family F of BNs if it fixes each f ∈ F . The fixing length λ ( F ) is the min length of a word fixing F . Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 9/37

  14. Example: 1231 is fixing (and no shorter word is fixing, thus λ ( f ) = 4 ). 1 , 3 1 011 111 2 , 3 1 x f ( x ) 3 3 000 000 001 000 010 110 1 010 001 2 2 011 001 2 100 010 001 101 101 000 1 110 010 2 3 3 111 100 1 , 2 2 000 100 1 1 , 2 , 3 3 Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 10/37

  15. Remarks 1. f is fixable only if f has a fixed point. 2. If f has a unique fixed point then: w fixes f ⇐ ⇒ w is synchronizing . 3. A family F is fixable if and only if each f ∈ F is fixable. Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 11/37

  16. Remarks 1. f is fixable only if f has a fixed point. 2. If f has a unique fixed point then: w fixes f ⇐ ⇒ w is synchronizing . 3. A family F is fixable if and only if each f ∈ F is fixable. Theorem 1 [Bollob´ as, Gotsman and Shamir 1993] There is a positive fraction φ ( n ) of fixable BNs with n components: n →∞ φ ( n ) = 1 − 1 lim e ≥ 0 . 64 . Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 11/37

  17. Example of fixable families 1. F M ( n ) : Monotone BNs ( 2 Θ( √ n 2 n ) ): ∀ x, y ∈ { 0 , 1 } n , x ≤ y ⇒ f ( x ) ≤ f ( y ) . Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 12/37

  18. Example of fixable families 1. F M ( n ) : Monotone BNs ( 2 Θ( √ n 2 n ) ): ∀ x, y ∈ { 0 , 1 } n , x ≤ y ⇒ f ( x ) ≤ f ( y ) . 2. F A ( n ) : BNs with an Acyclic interaction graph ( 2 Θ(2 n ) ). Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 12/37

  19. Example of fixable families 1. F M ( n ) : Monotone BNs ( 2 Θ( √ n 2 n ) ): ∀ x, y ∈ { 0 , 1 } n , x ≤ y ⇒ f ( x ) ≤ f ( y ) . 2. F A ( n ) : BNs with an Acyclic interaction graph ( 2 Θ(2 n ) ). 3. F I ( n ) : Increasing BNs ( 2 n 2 n − 1 ): ∀ x ∈ { 0 , 1 } n , x ≤ f ( x ) . Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 12/37

  20. Example of fixable families 1. F M ( n ) : Monotone BNs ( 2 Θ( √ n 2 n ) ): ∀ x, y ∈ { 0 , 1 } n , x ≤ y ⇒ f ( x ) ≤ f ( y ) . 2. F A ( n ) : BNs with an Acyclic interaction graph ( 2 Θ(2 n ) ). 3. F I ( n ) : Increasing BNs ( 2 n 2 n − 1 ): ∀ x ∈ { 0 , 1 } n , x ≤ f ( x ) . 4. F P ( n ) : Monotone BNs whose interaction graph is a Path ( 2 n ! ). Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 12/37

  21. Theorem [Aracena, Gadouleau, R., Salinas 2018+] Networks F max f ∈F λ ( f ) λ ( F ) Θ( n 2 ) Acyclic F A ( n ) n Θ( n 2 ) Path F P ( n ) n Θ( n 2 ) Θ( n 2 ) Increasing F I ( n ) Ω( n 2 ) O ( n 3 ) Monotone F M ( n ) Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 13/37

  22. Acyclic networks Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 14/37

  23. 1 2 3 4 5 G ( f ) stabilization 6 7 8 9 10 w := 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 is a fixing word Aracena, Gadouleau, Richard , Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 15/37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend