first steps
play

First Steps to the Optimization of Undulator Parameters for 125 - PowerPoint PPT Presentation

First Steps to the Optimization of Undulator Parameters for 125 GeV Drive Beam by Manuel Formela 04.09.2018 1 Overview Introducing formulas for: Power absorped by the undulator vessel in form of photons


  1. First Steps to the Optimization of Undulator Parameters for 125 GeV Drive Beam by Manuel Formela 04.09.2018 1

  2. Overview β€’ Introducing formulas for: β€’ Power absorped by the undulator vessel in form of photons 𝑄 π‘€π‘“π‘‘π‘‘π‘“π‘š β€’ Number of produced 𝑓 + by 𝑓 βˆ’ 𝑓 + - pair production in a Ti-6% Al-4%V target β€’ Undulator scheme used in the RDR β€’ Reproducing values for already calculated 𝑄 π‘€π‘“π‘‘π‘‘π‘“π‘š for the RDR set-up β€’ Calculations of 𝑂 𝑓 + for various parameter values for 𝐿, πœ‡, π‘š 𝑣 , 𝑂 β„Žπ‘‘π‘“π‘šπ‘š β€’ Dropping some parameter combinations due to restraints in 𝑂 𝑓 + and 𝑄 π‘€π‘“π‘‘π‘‘π‘“π‘š β€’ Outlook into possible future 04.09.2018 2

  3. Radiated Synchrotron Energy Spectral Density per Solid Angle per Electron Formulas taken from: Kincaid, Brian M. "A short‐period helical wiggler as an improved source of synchrotron radiation." Journal of Applied Physics 48.7 (1977): 2684-2691. First approximations: Photon frequency - relativistic ( 𝛿 ≫ 1 ) 2 = 𝑒 2 𝑋(πœ•) 𝑓 2 πœ• 2 +∞ π‘—πœ• π‘’βˆ’ ො π‘œ Τ¦ 𝑠 𝑒 𝑒𝐽(πœ•) - far field ( 𝑆 ≫ πœ‡ 𝛿 ) π‘œ Γ— Τ¦ 𝑑 = 14𝜌 3 πœ— 0 𝑑 ΰΆ± π‘œ Γ— ො ො 𝛾 𝑓 𝑒𝑒 𝑓 βˆ’ β†’ 0 ) 𝑒Ω π‘’Ξ©π‘’πœ• - pointlike charge ( π‘Š βˆ’βˆž For helical trajectory: Opening angle πœ• sin 2 𝑂 𝑣 𝜌 ∞ πœ• 1 βˆ’ π‘œ 2 e 2 πœ• 2 𝐿 2 𝑒𝐽(πœ•) β€²2 𝑦 1 + π›Ώπœ„ 𝐿 βˆ’ π‘œ 2 𝑦 1 = 2 𝛿 2 ෍ 𝐾 π‘œ 𝐾 π‘œ 2 4𝜌 3 πœ— 0 π‘‘πœ• 𝑣 𝑒Ω 𝑦 1 πœ• πœ• 1 βˆ’ π‘œ π‘œ=1 2nd approximations: - small (radiation) angle ( πœ„ β‰ͺ 1 β‡’ cos πœ„ β‰ˆ 1, sin πœ„ β‰ˆ πœ„) ; this is reasonable, because the radiation cone has according to theory an Opening angle of πœ„ β‰ˆ 1/𝛿 - Many undulator periods ( 𝑂 𝑣 ≳ 100 ) - reasonably small undulator parameter ( 𝐿 ≲ 1 β†’ 𝐿/𝛿 β‰ͺ 1 ) 04.09.2018 3

  4. ሢ πœ• sin 2 𝑂 𝑣 𝜌 ∞ πœ• 1 βˆ’ π‘œ 2 e 2 πœ• 2 𝐿 2 𝑒𝐽(πœ•) β€²2 𝑦 1 + π›Ώπœ„ 𝐿 βˆ’ π‘œ 2 𝑦 1 = 2 𝛿 2 ෍ 𝐾 π‘œ 𝐾 π‘œ 2 4𝜌 3 πœ— 0 π‘‘πœ• 𝑣 𝑒Ω 𝑦 1 πœ• πœ• 1 βˆ’ π‘œ π‘œ=1 Approximation sin 2 π‘‚πœŒπ‘§ /𝑧 2 β†’ NπœŒπœ€(𝑧) : ∞ ∞ 𝑒𝐽(πœ•) 2 N u e 2 πœ• 𝑣 𝐿 2 8𝛿 4 𝑒𝑋 β€²2 𝑦 π‘œ + π›Ώπœ„ 𝐿 βˆ’ π‘œ Radiated energy π‘œ 2 𝐾 π‘œ 2 𝑦 π‘œ 1. 𝑒Ω = ΰΆ± π‘’πœ• β‰ˆ 4πœŒπœ— 0 𝑑 1 + 𝐿 2 + 𝛿 2 πœ„ 2 3 ෍ 𝐾 π‘œ per solid angle 𝑒Ω 𝑦 π‘œ 0 π‘œ=1 ∞ 2 𝑒Ω β‰ˆ N u e 2 𝐿 2 𝑠 Radiated energy 2. 𝑒𝑋 π‘’πœ• = ΰΆ± 𝑒𝐽(πœ•) β€²2 𝑧 π‘œ + 𝛽 π‘œ 𝐿 βˆ’ π‘œ π‘œ 2 𝐾 π‘œ 2 𝑧 π‘œ 2 ) ෍ 𝐾 π‘œ 𝐼(𝛽 π‘œ spectral density 𝑒Ω πœ— 0 𝑑 𝑧 π‘œ π‘œ=1 Numerical integration leads to: 𝜌 𝑂 𝑓 βˆ’ ΰΆ± 𝑒𝑋 sin πœ„ 𝑒𝑋 𝑒Ω 𝑒Ω = 2𝜌 ሢ 𝑂 𝑓 βˆ’ ΰΆ± 1. 𝑄 π‘€π‘“π‘‘π‘‘π‘“π‘š = π‘’πœ„ π‘’πœ„ Power deposited in the undulator vessel πœ„ 1 ∞ 1 𝑂 𝑓 + = 1 𝑒𝑋 π‘’πœ• (1 βˆ’ 𝑓 βˆ’π‘’πœπœ(πœ•) )π‘’πœ• ℏ ΰΆ± 2. Positron number produced by all photons πœ• 0 Target thickness Cross section for 𝑓 βˆ’ 𝑓 + -pair production by photon of target material Target density 04.09.2018 4

  5. Undulator set up (RDR, BCD) Taken from: Scott, Duncan J. "An Investigation into the Design of the Helical Undulator for the International Linear Collider Positron Sourceβ€œ Undulator aperture = 5.85 mm 20 of such half-cell will be arranged in a row to form the full undulator (with 240 m of total magnetic length) 04.09.2018 5

  6. Test: Power deposited in the undulator vessel - Dashed lines: single undulator piece - Solid lines: whole undulator scheme - Blue: RDR parameters - Red: BCD parameters Current calculations In good agreement Duncan J Scottβ€˜s calculations 04.09.2018 6

  7. Undulator mask (consisting of collimators with aperture of 4.4 mm) for preventing heating of the vessel due to photon absorption. Undulator aperture = 5.85 mm The limit of maximal absorped power is 1 Wm βˆ’1 (according to Duncan J Scott, who in turn names the source to be private communication with T Bradshaw) 04.09.2018 7

  8. Current calculations In good agreement Duncan J Scottβ€˜s calculations 04.09.2018 8

  9. Current calculations Peridocity and peak values are in good agreement; Disagreement in dip values and local shape of the graph In good agreement Duncan J Scottβ€˜s calculations 04.09.2018 9

  10. 04.09.2018 10

  11. Examined parameter combination for the positron number 𝐿 = 0.65, 0.9, 1.15, πœ‡ 𝑣 = 8.5, 10, 11.5 mm , π‘š 𝑣 = 1.75, 2 m , 𝑂 β„Žπ‘‘π‘“π‘šπ‘š = 18, 20, 22 04.09.2018 11

  12. 04.09.2018 12

  13. 𝐿 = 1.15, πœ‡ = 8.5 mm, π‘š 𝑣 = 2m, 𝑂 β„Žπ‘‘π‘“π‘šπ‘š = 22 ∼ 264 m magnetic length 04.09.2018 13

  14. Possible future improvements β€’ Drop a single or multiple approximations ( 𝛿 ≫ 1 , πœ„ β‰ͺ 1 , 𝑂 𝑣 ≳ 100 , 𝑓 βˆ’ β†’ 0 , sin 2 π‘‚πœŒπ‘§ /𝑧 2 β†’ NπœŒπœ€(𝑧) , etc.) 𝐿 ≲ 1 , 𝑆 ≫ πœ‡ 𝛿 , π‘Š β€’ Correcting possible flaws in the undulator mask considerations β€’ For 𝑂 𝑓 + : Numerical integration over a solid angle, that only covers the target instead of the full πœ„ = 0 βˆ’ 𝜌 ∞ 2 𝑒Ω β‰ˆ N u e 2 𝐿 2 𝑠 𝑒𝑋 π‘’πœ• = ΰΆ± 𝑒𝐽(πœ•) β€²2 𝑧 π‘œ + 𝛽 π‘œ 𝐿 βˆ’ π‘œ π‘œ 2 𝐾 π‘œ 2 𝑧 π‘œ 2 ) ෍ 𝐾 π‘œ 𝐼(𝛽 π‘œ 𝑒Ω πœ— 0 𝑑 𝑧 π‘œ π‘œ=1 β€’ Examining more intermediate parameter values between the upper and lower limits β€’ Adding more criteria for the optimazation besides lower limit for 𝑂 𝑓 + and upper limit for 𝑄 π‘€π‘“π‘‘π‘‘π‘“π‘š 04.09.2018 14

  15. Thank you for your attention 04.09.2018 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend