first order phase transition for the random cluster model
play

First order phase transition for the Random Cluster model with q > - PowerPoint PPT Presentation

First order phase transition for the Random Cluster model with q > 4 Ioan Manolescu joint work with: Hugo Duminil-Copin, Maxime Gagnebin, Matan Harel, Vincent Tassion University of Fribourg 14th February 2017 Diablerets Ioan Manolescu


  1. First order phase transition for the Random Cluster model with q > 4 Ioan Manolescu joint work with: Hugo Duminil-Copin, Maxime Gagnebin, Matan Harel, Vincent Tassion University of Fribourg 14th February 2017 Diablerets Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 1 / 13

  2. Setting: G is a finite subgraph of Z 2 . Random Cluster model: parameters q ≥ 1 and p ∈ [0 , 1] on G = ( V , E ): 1 ω ∈ { 0 , 1 } E with probability p o ( ω ) (1 − p ) c ( ω ) q k ( ω ) . Φ p , G , q ( ω ) = Z p , G , q Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 2 / 13

  3. Setting: G is a finite subgraph of Z 2 . Random Cluster model: parameters q ≥ 1 and p ∈ [0 , 1] on G = ( V , E ): 1 ω ∈ { 0 , 1 } E with probability Φ 0 / 1 p o ( ω ) (1 − p ) c ( ω ) q k 0 / 1 ( ω ) . p , G , q ( ω ) = Z p , G , q Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 2 / 13

  4. Setting: G is a finite subgraph of Z 2 . Random Cluster model: parameters q ≥ 1 and p ∈ [0 , 1] on G = ( V , E ): 1 ω ∈ { 0 , 1 } E with probability Φ 0 / 1 p o ( ω ) (1 − p ) c ( ω ) q k 0 / 1 ( ω ) . p , G , q ( ω ) = Z p , G , q Infinite volume measures on Z 2 may be defined by taking limits: Φ 0 G → Z 2 Φ 0 Φ 1 G → Z 2 Φ 1 Φ 0 p , q ≤ Φ 1 p , G , q − − − − → and p , G , q − − − − → p , q . p , q . p , q Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 2 / 13

  5. Setting: G is a finite subgraph of Z 2 . Random Cluster model: parameters q ≥ 1 and p ∈ [0 , 1] on G = ( V , E ): 1 ω ∈ { 0 , 1 } E with probability Φ 0 / 1 p o ( ω ) (1 − p ) c ( ω ) q k 0 / 1 ( ω ) . p , G , q ( ω ) = Z p , G , q Infinite volume measures on Z 2 may be defined by taking limits: Φ 0 G → Z 2 Φ 0 Φ 1 G → Z 2 Φ 1 Φ 0 p , q ≤ Φ 1 p , G , q − − − − → and p , G , q − − − − → p , q . p , q . p , q Phase transition in terms of infinite cluster (Φ p , q increasing in p ) ? subcritical phase supercritical phase 0 1 p c no infinite cluster, infinite cluster exists, connections decay exponentially finite clusters decay exponentially Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 2 / 13

  6. Setting: G is a finite subgraph of Z 2 . Random Cluster model: parameters q ≥ 1 and p ∈ [0 , 1] on G = ( V , E ): 1 ω ∈ { 0 , 1 } E with probability Φ 0 / 1 p o ( ω ) (1 − p ) c ( ω ) q k 0 / 1 ( ω ) . p , G , q ( ω ) = Z p , G , q Infinite volume measures on Z 2 may be defined by taking limits: Φ 0 G → Z 2 Φ 0 Φ 1 G → Z 2 Φ 1 Φ 0 p , q ≤ Φ 1 p , G , q − − − − → and p , G , q − − − − → p , q . p , q . p , q Phase transition in terms of infinite cluster (Φ p , q increasing in p ) ? subcritical phase supercritical phase 0 1 p c no infinite cluster, infinite cluster exists, connections decay exponentially finite clusters decay exponentially Theorem (Beffara, Duminil-Copin 2012) √ q On Z 2 , p c = 1+ √ q (in other words p c = p sd , the self-dual parameter). Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 2 / 13

  7. φ p (0 ↔ ∞ ) φ p (0 ↔ ∞ ) 1 1 [ ] 0 0 p c 1 1 p c Theorem (Duminil-Copin, Sidoravicius, Tassion 2015) Phase transition: either one or the other. Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 3 / 13

  8. φ p (0 ↔ ∞ ) φ p (0 ↔ ∞ ) 1 1 Two critical measures φ 1 p c - supercritical [ φ p c - critical φ 0 p c - subcritical ] 0 0 p c 1 1 p c Theorem (Duminil-Copin, Sidoravicius, Tassion 2015) Phase transition: either one or the other. Continuous phase transition: . . . or discontinuous: φ 0 p c = φ 1 φ 0 p c � = φ 1 p c ; p c ; in φ p c connections decrease in φ 0 p c connections decrease polynomially; exponentially, no infinite cluster for φ p c ; infinite cluster in φ 1 p c . strong RSW type estimates. Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 3 / 13

  9. φ p (0 ↔ ∞ ) φ p (0 ↔ ∞ ) 1 1 Two critical measures φ 1 p c - supercritical [ φ p c - critical φ 0 p c - subcritical ] 0 0 p c 1 1 p c Theorem (Duminil-Copin, Sidoravicius, Tassion 2015) Phase transition: either one or the other. Continuous phase transition: . . . or discontinuous: φ 0 p c = φ 1 φ 0 p c � = φ 1 p c ; p c ; in φ p c connections decrease in φ 0 p c connections decrease polynomially; exponentially, no infinite cluster for φ p c ; infinite cluster in φ 1 p c . strong RSW type estimates. When q ∈ [1 , 4] Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 3 / 13

  10. φ p (0 ↔ ∞ ) φ p (0 ↔ ∞ ) 1 1 Two critical measures φ 1 p c - supercritical [ φ p c - critical φ 0 p c - subcritical ] 0 0 p c 1 1 p c Theorem (Duminil-Copin, Sidoravicius, Tassion 2015) Phase transition: either one or the other. Continuous phase transition: . . . or discontinuous: φ 0 p c = φ 1 φ 0 p c � = φ 1 p c ; p c ; in φ p c connections decrease in φ 0 p c connections decrease polynomially; exponentially, no infinite cluster for φ p c ; infinite cluster in φ 1 p c . strong RSW type estimates. (HDC,MH,MG,IM,VT 2017): When q ∈ [1 , 4] . . . when q > 4 Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 3 / 13

  11. Theorem (H. Duminil-Copin, M. Gagnebin, M. Harel, I.M., V. Tassion) The phase transition of RCM on the square lattice with q > 4 is discontinuous . Moreover, if λ > 0 satisfies cosh( λ ) = √ q / 2 , then   ∂ Λ n ∞ n →∞ − 1 ξ ( q ) − 1 = lim ( − 1) k � n log φ 0    = λ + 2 tanh( k λ ) > 0 . p c , q   k  k =1 π 2 � � ξ ( q ) − 1 ∼ 8 exp As q ց 4 , − √ q − 4 .   ∂ Λ n n � � φ 0    = exp − ξ ( q ) + o ( n ) p c , q    Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 4 / 13

  12. Relation the six vertex model. a a b b c c Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 5 / 13

  13. A brief introduction to the six vertex model. Configurations: On a part of Z 2 : orient each edge s.t. each vertex has exactly two incoming edges . a a b b c c a n 1 + n 2 · b n 3 + n 4 · c n 5 + n 6 Weight: Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 6 / 13

  14. A brief introduction to the six vertex model. Configurations: On a part of Z 2 : orient each edge s.t. each vertex has exactly two incoming edges . a a b b c c 1 a n 1 + n 2 · b n 3 + n 4 · c n 5 + n 6 Probability: Z 6 V Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 6 / 13

  15. A brief introduction to the six vertex model. Configurations: On a part of Z 2 : orient each edge s.t. each vertex has exactly two incoming edges . a a b b c c 1 a n 1 + n 2 · b n 3 + n 4 · c n 5 + n 6 Probability: Z 6 V We limit ourselves to a = b = 1 and c ≥ 2 (∆= a 2 + b 2 − c 2 < − 1: anti-ferroelectric phase). 2 ab Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 6 / 13

  16. A brief introduction to the six vertex model. Configurations: On a part of Z 2 : orient each edge s.t. each vertex has exactly two incoming edges . a a b b c c 1 c n 5 + n 6 Probability: Z 6 V We limit ourselves to a = b = 1 and c ≥ 2 (∆= a 2 + b 2 − c 2 < − 1: anti-ferroelectric phase). 2 ab M Torus T N , M , with M → ∞ then N → ∞ . N Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 6 / 13

  17. A brief introduction to the six vertex model. Configurations: On a part of Z 2 : orient each edge s.t. each vertex has exactly two incoming edges . a a b b c c 1 c n 5 + n 6 Probability: Z 6 V We limit ourselves to a = b = 1 and c ≥ 2 (∆= a 2 + b 2 − c 2 < − 1: anti-ferroelectric phase). 2 ab M Torus T N , M , with M → ∞ then N → ∞ . N Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 6 / 13

  18. A brief introduction to the six vertex model. Configurations: On a part of Z 2 : orient each edge s.t. each vertex has exactly two incoming edges . a a b b c c 1 c n 5 + n 6 Probability: Z 6 V We limit ourselves to a = b = 1 and c ≥ 2 (∆= a 2 + b 2 − c 2 < − 1: anti-ferroelectric phase). 2 ab M Torus T N , M , with M → ∞ then N → ∞ . N Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 6 / 13

  19. From random cluster to six vertex. Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 7 / 13

  20. From random cluster to six vertex. ω Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 7 / 13

  21. From random cluster to six vertex. ω ( ℓ ) ω Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 7 / 13

  22. From random cluster to six vertex. ω ( ℓ ) ω ω Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 7 / 13

  23. From random cluster to six vertex. ω ( ℓ ) ω ω � ω Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 7 / 13

  24. From random cluster to six vertex. ω ( ℓ ) ω ω � ω w RC ( ω ) = p o ( ω ) (1 − p sd ) c ( ω ) q k ( ω ) sd Ioan Manolescu (University of Fribourg) Random Cluster q > 4 14th Feb. 2017 7 / 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend