finite range kernel decompositions and asymptotic optimal
play

Finite-range kernel decompositions and asymptotic Optimal Transport - PowerPoint PPT Presentation

Finite-range kernel decompositions and asymptotic Optimal Transport between configurations Mircea Petrache, PUC Chile February 27, 2018 Density Functional Theory Cystein molecule simulation , (from Walter Kohns Nobel prize laudation page) D


  1. Finite-range kernel decompositions and asymptotic Optimal Transport between configurations Mircea Petrache, PUC Chile February 27, 2018

  2. Density Functional Theory Cystein molecule simulation , (from Walter Kohn’s Nobel prize laudation page)

  3. D ENSITY F UNCTIONAL T HEORY ◮ The chemical behavior of atoms and molecules is captured by quantum mechanics via Schr¨ odinger’s eq. (Dirac ’29) ◮ Curse of dimensionality : ◮ The Schr¨ odinger equation is of the form H Ψ = E Ψ , a second order PDE on R 3 N , Ψ represents the state of the N -particle system. ◮ Chemical behavior ∼ energy differences ≪ total energy ◮ Example: carbon atom: N = 6, spectral gap = 10 − 4 × (total energy). Discretize R by 10 points ⇒ 10 18 total grid points. ◮ A scalable simplified reformulation of the precise equations is the Hohenberg-Kohn-Sham (HK) model (Levy ’79 - Lieb ’83). It is formulated in terms of the normalized one-particle density ρ .

  4. D ENSITY F UNCTIONAL T HEORY ◮ The HK model boomed in computational chemistry since the 1990’s. ◮ More than 15000 papers a year contain the keywords ’density functional theory’. ◮ There exist ’cheap’ versions which allow computations of large molecules (e.g. DNA, enzymes), routinely used in comp. chemistry, biochemistry, material science, etc. ◮ Lack of systematic improvability of the computations.

  5. D ENSITY F UNCTIONAL T HEORY How to devise faster methods for the full model at large N ? Simulation of heavy-metal pump in E. Coli (Su & al., Nature ’11 )

  6. N-marginal Optimal Transport

  7. A N N - MARGINAL O PTIMAL T RANSPORT PROBLEM :   � �   N � � γ N ∈ P sym (( R d ) N ) , 1 F OT � N ( ρ ) := min | x i − x j | s d γ N ( x 1 , . . . , x N )  . � γ N �→ ρ  ( R d ) N i � = j Optimal γ N (radial part) for N = 2 , s = 1 and d = 3 and different ρ from Cotar-Friesecke-Kl¨ upperberg ’13

  8. Optimal γ N for N = 3 , 4 , 5 points, and s = 1 , d = 1 (projected from R N to R 2 ) , from Di Marino-Gerolin-Nenna ’15

  9. A BOUT N - MARGINAL O PTIMAL T RANSPORT PROBLEMS :   � �   N � � γ N ∈ P sym (( R d ) N ) , F OT � N , c ( ρ ) := min c ( x i − x j ) d γ N ( x 1 , . . . , x N )  . � γ N �→ ρ  ( R d ) N i � = j ◮ Problem appeared naturally in OT theory (for tame c ( x − y ) ) Gangbo-Swiech ’98, Carlier ’03, Carlier-Nazaret ’08 ◮ Optimal transport community Colombo-De Pascale-Di Marino ’13, Colombo-Di Marino ’15, Di Marino-Gerolin-Nenna ’15, De Pascale ’15, Buttazzo-Champion-De Pascale ’17, .. ◮ Link between OT and DFT/math physics Cotar-Friesecke-Kl¨ uppelberg ’13, ’17, Cotar-Friesecke-Pass ’15,.. ◮ Regularity-type results Pass ’13, Moameni ’14, Moameni-Pass ’17, Kim-Pass ’17..

  10. DFT AND MULTIMARGINAL OT ◮ Hohenberg-Kohn functional: energy of N electrons of density ρ (Hohenberg-Kohn ’64, Levy ’79, Lieb ’83) Ψ N ∈A N , Ψ N �→ ρ � Ψ N , ( � 2 � T + � F HK N [ ρ ] := min V ee )Ψ N � . ◮ � T = − 1 2 ∆ R Nd quantum mechanical kinetic energy ◮ V ee ( x 1 , .., x N ) = � 1 ≤ i < j ≤ N 1 / | x i − x j | d − 2 , ◮ � � � Ψ N : ( R d × Z 2 ) N → C , � Ψ N � L 2 = 1 , ∇ | Ψ N | ∈ L 2 , Antisymm. A N = ◮ Ψ N �→ ρ means � � | Ψ( x 1 , s 1 , .., s N , x N ) | 2 dx 2 . . . dx N = ρ ( x 1 ) . s 1 ,.., s N ∈ Z 2 ◮ lim � → 0 F HK N [ ρ ] = F OT N ( ρ ) (Cotar-Friesecke-Kl¨ uppelberg ’13,’17, Lewin ’17, De Pascale-Bindini ’17)

  11. M INIMUM ENERGY AND MULTIMARGINAL OT ◮ If ω N = { x 1 , . . . , x N } ⊂ N and V : R d → R “confining” potential, N � � 1 E V ( ω N ) := | x i − x j | s + N V ( x i ) . i � = j i = 1 ◮ Let ω ∗ N be minimum E V -energy configurations. Then �� � d µ ( x ) d µ ( y ) � � � 1 lim δ p = µ V ∈ argmin + V ( x ) d µ ( x ) | x − y | s N N →∞ p ∈ ω ∗ N ◮ γ ∗ N := uniform on { permutations of ω ∗ N } . Then γ ∗ N ∈ P sym (( R d ) N ) and we find   � �  1 F OT N ( µ V ) ≥ F OT  = E V ( ω ∗ δ p N ) − Vd µ V . N N p ∈ ω ∗ N

  12. Results and Open Problems

  13. L EADING - ORDER ASYMPTOTICS , 0 ≤ s < d ◮ First-order “mean field” functional: Cotar-Friesecke-Pass ’15. ◮ Petrache ’15: generalization by convexity + De Finetti Theorem � N � − 1 � � F N , c ( ρ ) = R d c ( x − y ) ρ ( x ) ρ ( y ) dx dy lim 2 N →∞ R d if and only if c ( x − y ) is balanced positive definite, i.e. � � � ρ ( x ) ρ ( y ) c ( x − y ) ≥ 0 whenever ρ = 0 .

  14. N EXT - ORDER TERM , 0 < s < d ◮ d = 1, general kernels: unpublished note by Di Marino ◮ s = 1 , d = 3: Lewin-Lieb-Seiringer ’17, using Graf-Schenker ’95 ◮ Improving upon the different strategy Fefferman ’85, we get: Theorem (Cotar-Petrache ’17) If d ≥ 1 , 0 < s < d and ρ s.t. the following integrals are finite, then � � ρ ( x ) ρ ( y ) F OT N , s ( ρ ) = N 2 | x − y | s dx dy R d R d � � � + N 1 + s R d ρ 1 + s d ( x ) dx + o ( 1 ) C UG ( d , s ) as N → ∞ . d We can interpret C UG ( d , s ) = min energy of an “Uniform Riesz Gas” (special case: “Uniform Electron Gas” from DFT, for s = d − 2).

  15. N EXT - ORDER TERMS : OT VS . E NERGY Theorem (Cotar-Petrache ’17) If 0 < s < d and d µ ( x ) = ρ ( x ) dx then as N → ∞ � � � N 2 E ( µ ) + N 1 + s R d ρ 1 + s F OT d ( x ) dx + o ( 1 ) N , s ( µ ) = C UG ( d , s ) . d We can interpret C UG ( d , s ) = min E UG ( ν ) “uniform gas” energy on microscale configurations. Recall: Theorem (Petrache-Serfaty ’15) If max { 0 , d − 2 } ≤ s < d under suitable assumptions on V, as N → ∞ � � � 1 + s ( s � = 0 ) N 2 E ( µ V ) + N 1 + s min H N = C Jel ( d , s ) µ d ( x ) dx + o ( 1 ) . d V We can interpret C Jel ( d , s ) = min E Jel ( ν ) , “Riesz Jellium” energy on microscale configurations.

  16. N EXT - ORDER TERMS : OPEN PROBLEMS Theorem (Cotar-Petrache ’17) For d ≥ 2 and d − 2 < s < d there holds C Jel ( d , s ) = C UG ( d , s ) . ◮ The above asymptotic microscale problems are then equivalent for d ≥ 2 and d − 2 < s < d . ◮ Heuristics for s = 1 , d = 3 in Lewin-Lieb ’15: C Jel ( d , d − 2 ) � = C UG ( d , d − 2 ) , questioning the physicists’ conjecture that C Jel ( d , d − 2 ) = C UG ( d , d − 2 ) . ◮ Open problem : prove or disprove C Jel ( d , d − 2 ) � = C UG ( d , d − 2 ) . ◮ Open problem : Sharp asymptotics of min H N for 0 < s < d − 2. ◮ Possible ideas: ◮ s �→ C Jel ( d , s ) might have a jump at s = d − 2. ◮ The (analytic continuation in α of the) fractional laplacian ( − ∆) α from Petrache-Serfaty has a residue at s = d − 2 , d − 4 , . . . .

  17. N EXT - ORDER TERMS : OPEN PROBLEMS “Exchange-correlation” energy = Part of the energy not encoded in 1-particle density � � N ( ρ ) − N 2 ρ ( x ) ρ ( y ) E xc N ( ρ ) := F OT � | x − y | s dx dy . R d ρ R d R d In Cotar-Petrache ’17 we prove � N →∞ N − 1 − s R d ρ 1 + s d E xc d ( x ) dx . lim N ( ρ ) = C UG ( d , s ) C UG ( 3 , 1 ) = asymptotic Lieb-Oxford constant (cf. Dirac ’30, Lieb-Oxford ’81, Lewin-Lieb ’15). ◮ Open questions : Let d ≥ 2, let 0 < s < d . What are the precise values of (any of) N ∈ N N − 1 − s d E xc inf N ( 1 [ 0 , 1 ] d ) or C UG ( d , s ) ? (most physically relevant for s = 1 , d = 3)

  18. Proof strategy

  19. S HARP NEXT - ORDER TERM : PROOF FOR UNIFORM ρ � � M 1 ρ 1 + M 2 ρ 2 1. E xc ≤ E xc M 1 ( ρ 1 ) + E xc M 2 ( ρ 2 ) . M 1 + M 2 M 1 + M 2 2. E xc N ( α d ρ α ) = α − s E xc N ( ρ ) if ρ α ( x ) = ρ ( α x ) . 3. This and a subadditivity argument (Robinson-Ruelle) proves that for ρ = 1 A , | A | = 1, there holds: N →∞ N − 1 − s d E xc lim N ( 1 A ) = C UG ( d , s ) This will give also the interpretation of C UG ( d , s ) as an energy on microscopic blow-up configurations. (Note that C UG ( d , s ) < 0.)

  20. S HARP NEXT - ORDER TERM : PIECEWISE CONSTANT ρ k � ρ ( x ) = α i µ i , µ i uniform prob. on a hyperrectangle i = 1 ◮ Upper bound: subadditivity* ◮ Lower bound: 1. An ensemble (Ω , P ) of packings { F ω } ω ∈ Ω 2. each F ω consisting of balls of sizes 0 < R 1 < · · · < R M in a geometric series, 3. if Σ = spt ( µ ) then | Σ \ ∪ A ∈ F ω A | → 0 as R M → 0 4. at fixed F ω , decompose the kernel + average: N � � � | x i − x j | − s = | x i − x j | − s + err ω ( x 1 , . . . , x d ) , i � = j A ∈ F ω 1 ≤ i � = j ≤ N i , j = 1 xi , xj ∈ A 5.  � � ρ | A �  � E xc  d P ( ω ) ≤ E xc � N ( ρ ) + err , N A A ρ Ω A ∈ F ω

  21. S HARP NEXT - ORDER TERM : PIECEWISE CONSTANT ρ k � ρ ( x ) = α i ρ i , ρ i uniform prob. on a hyperrectangle i = 1 ◮ Upper bound: subadditivity* ◮ Lower bound: 1. A family of packings { F ω } ω ∈ Ω 2. each F ω consisting of balls of sizes 0 < R 1 < · · · < R M in a geometric series, 3. if Σ = spt ( ρ ) then | Σ \ ∪ A ∈ F ω A | → 0 as R M → 0 4. at fixed F ω , decompose the kernel + average: � c ( x − y ) = 1 A ( x ) 1 A ( y ) c ( x − y ) + err ω ( x − y ) , A ∈ F ω 5.  � � ρ | A �  � E xc  d P ( ω ) ≤ E xc � N ( ρ ) + err , N A A ρ Ω A ∈ F ω

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend