finance insurance and stochastic control i jin ma
play

Finance, Insurance, and Stochastic Control (I) Jin Ma Spring School - PowerPoint PPT Presentation

Finance, Insurance, and Stochastic Control (I) Jin Ma Spring School on Stochastic Control in Finance Roscoff, France, March 7-17, 2010 Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 1/ 57 Lecture Plan Part I. Ruin


  1. Risk Reserve Process Example � t Cram´ er-Lundberg Model: X t = x + 0 c s ds − S t � t Add expense loading: X t = x + 0 c s (1 + ρ s ) ds − S t � t Add interest income: X t = x + 0 [ r s X s + c s (1 + ρ s )] ds − S t Reserve with Investment � t � � X t = x + X s [ r s + � π s , µ s − r s 1 � ] + c s (1 + ρ s ) ds 0 � t � t � + X s � π s , σ s dW s � − f ( s , z ) µ ( dsdz ) , (2) 0 0 R + General Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 11/ 57

  2. Ruin Problems Consider the simplest Cram´ er-Lundberg model: � t X t = x + c s ds − S t , t ≥ 0 . (3) 0 Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 12/ 57

  3. Ruin Problems Consider the simplest Cram´ er-Lundberg model: � t X t = x + c s ds − S t , t ≥ 0 . (3) 0 Ruin Problem Find/estimate the “ruin probabilities”: ψ ( x , T ) = P { X t < 0 : ∃ t ∈ (0 , T ] } ; (Finite horizon) ψ ( x ) = P { X t < 0 : ∃ t > 0 } . (Infinite horizon) . Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 12/ 57

  4. Ruin Problems Consider the simplest Cram´ er-Lundberg model: � t X t = x + c s ds − S t , t ≥ 0 . (3) 0 Ruin Problem Find/estimate the “ruin probabilities”: ψ ( x , T ) = P { X t < 0 : ∃ t ∈ (0 , T ] } ; (Finite horizon) ψ ( x ) = P { X t < 0 : ∃ t > 0 } . (Infinite horizon) . Thinking finance? Default probability? Structure model? ... Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 12/ 57

  5. Existing ways/methods of studying ruin probabilities Direct Calculation : (e.g, vi IDE) — Lundberg (’26), Cram´ er (’35), Segerdahi (’42)... Bounds : — Lundberg (’26, 32, 34), Crem´ er (’55), Gerber (’76), Feller (’71) ... u →∞ ψ ( u ) e γ u =? u →∞ ψ ( u , T ) e γ u =?) Asymptotics : (e.g., lim lim — Teugels-Veraverbeke (’73), Djehiche (’93), Asmussen-kl¨ uppelberg (’96)... Approximations (of claim size dist.): — De Vylder (’78), Daley Rolski (’84)... Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 13/ 57

  6. Existing ways/methods of studying ruin probabilities One of most notable discovery in ruin theory is that the ruin probablity satisfies a differential or integro-differential equation. Main Result (Feller (1971), Gerber (1990)) Assume classical Cram´ er-Lundberg model. L ψ ( x ) be the infinite horizon ruin probability with initial capital x , and ϕ ( x ) = 1 − ψ ( x ) be the corresponding non-ruin probability. Then � x λ ϕ ( x − z )¯ ϕ ( x ) = ϕ (0) + F Z ( z ) dz , (4) c (1 + ρ ) 0 where F is the jump size distribution and ¯ F = 1 − F , and λ is the intensity of jump frequency. Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 14/ 57

  7. Existing ways/methods of studying ruin probabilities One of most notable discovery in ruin theory is that the ruin probablity satisfies a differential or integro-differential equation. Main Result (Feller (1971), Gerber (1990)) Assume classical Cram´ er-Lundberg model. L ψ ( x ) be the infinite horizon ruin probability with initial capital x , and ϕ ( x ) = 1 − ψ ( x ) be the corresponding non-ruin probability. Then � x λ ϕ ( x − z )¯ ϕ ( x ) = ϕ (0) + F Z ( z ) dz , (4) c (1 + ρ ) 0 where F is the jump size distribution and ¯ F = 1 − F , and λ is the intensity of jump frequency. More general model— Reinhard (1984), Asmusson (1989) (Hidden Markovian), Asmusson-Petersen (1988) (reserve dependent premium) ... Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 14/ 57

  8. Ruin Probility via Differential Equations Assume that the risk reserve satisfies the following SDE: � t � t � X t = x + b ( s , X s ) ds − f ( s , z ) N p ( dzds ) , (5) 0 0 I R + where b : [0 , ∞ ) × R �→ R is some (deterministic!) measurable function (could be Lipschitz..., if you wish). Then X is (strong) Markov. Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 15/ 57

  9. Ruin Probility via Differential Equations Assume that the risk reserve satisfies the following SDE: � t � t � X t = x + b ( s , X s ) ds − f ( s , z ) N p ( dzds ) , (5) 0 0 I R + where b : [0 , ∞ ) × R �→ R is some (deterministic!) measurable function (could be Lipschitz..., if you wish). Then X is (strong) Markov. Define τ = inf { t ≥ 0 : X t < 0 } . Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 15/ 57

  10. Ruin Probility via Differential Equations Assume that the risk reserve satisfies the following SDE: � t � t � X t = x + b ( s , X s ) ds − f ( s , z ) N p ( dzds ) , (5) 0 0 I R + where b : [0 , ∞ ) × R �→ R is some (deterministic!) measurable function (could be Lipschitz..., if you wish). Then X is (strong) Markov. Define τ = inf { t ≥ 0 : X t < 0 } . Then, ∀ 0 < t < T , 1 { τ< T } = 1 { τ< t } + 1 { t ≤ τ } 1 { inf t ≤ s < T X s < 0 } . (6) Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 15/ 57

  11. Ruin Probility via Differential Equations Assume that the risk reserve satisfies the following SDE: � t � t � X t = x + b ( s , X s ) ds − f ( s , z ) N p ( dzds ) , (5) 0 0 I R + where b : [0 , ∞ ) × R �→ R is some (deterministic!) measurable function (could be Lipschitz..., if you wish). Then X is (strong) Markov. Define τ = inf { t ≥ 0 : X t < 0 } . Then, ∀ 0 < t < T , 1 { τ< T } = 1 { τ< t } + 1 { t ≤ τ } 1 { inf t ≤ s < T X s < 0 } . (6) △ = P { τ < T | F X t } = E { 1 { τ< T } | F X Define M t t } ; and � � � � △ Ψ( t , r ) = P t ≤ s < T X t < 0 inf � X t = r . (7) Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 15/ 57

  12. Ruin Probility via Differential Equations Taking conditional expectations E { · | F X t } on both sides of (6) and using the Markovian Property of X : � � � � M t = 1 { τ ≤ t } + 1 { τ> t } P t ≤ s < T X t < 0 inf � X t = 1 { τ< t } + 1 { τ ≥ t } Ψ( t , X t ) . (8) Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 16/ 57

  13. Ruin Probility via Differential Equations Taking conditional expectations E { · | F X t } on both sides of (6) and using the Markovian Property of X : � � � � M t = 1 { τ ≤ t } + 1 { τ> t } P t ≤ s < T X t < 0 inf � X t = 1 { τ< t } + 1 { τ ≥ t } Ψ( t , X t ) . (8) Setting t = t ∧ τ in (8), we obtain that M t ∧ τ = Ψ( t ∧ τ, X t ∧ τ ) . (9) Thus by Optional Sampling t �→ Ψ( t ∧ τ, X t ∧ τ ) is an (UI) F X -mg! Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 16/ 57

  14. Ruin Probility via Differential Equations Taking conditional expectations E { · | F X t } on both sides of (6) and using the Markovian Property of X : � � � � M t = 1 { τ ≤ t } + 1 { τ> t } P t ≤ s < T X t < 0 inf � X t = 1 { τ< t } + 1 { τ ≥ t } Ψ( t , X t ) . (8) Setting t = t ∧ τ in (8), we obtain that M t ∧ τ = Ψ( t ∧ τ, X t ∧ τ ) . (9) Thus by Optional Sampling t �→ Ψ( t ∧ τ, X t ∧ τ ) is an (UI) F X -mg! Now denote Φ( t , r ) = 1 − Ψ( t , r ) ( non-ruin probability ), and assume that Φ( · , · ) ∈ C 1 , 1 . Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 16/ 57

  15. Ruin Probility via Differential Equations Applying Itˆ o (BV version) to get Φ( t ∧ τ, X t ∧ τ ) − Φ(0 , x ) � t ∧ τ � t ∧ τ = ∂ t Φ( s , X s ) ds + ∂ r Φ( s , X s ) b ( s , X s ) ds 0 0 � t ∧ τ � + [Φ( s , X s − − f ( s , z )) − Φ( s , X s − )] N p ( dzds ) 0 R + � t ∧ τ � t ∧ τ = ∂ t Φ( s , X s ) ds + ∂ r Φ( s , X s ) b ( s , X s ) ds 0 0 � t ∧ τ � [Φ( s , X s − − f ( s , z )) − Φ( s , X s − )] ν ( dz ) ds + M ∗ + t ∧ τ , 0 R + where � t ∧ τ � M ∗ [Φ( s , X s − − f ( s , z )) − Φ( s , X s − )] � t = N p ( dzds ) 0 R + is an martingale with zero mean. Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 17/ 57

  16. Ruin Probility via Differential Equations Thus � t ∧ τ � t ∧ τ ∂ t Φ( s , X s ) ds + ∂ r Φ( s , X s ) b ( s , X s ) ds 0 0 � t ∧ τ � + [Φ( s , X s − − f ( s , z )) − Φ( s , X s − )] ν ( dz ) ds 0 R + Φ( t ∧ τ, X t ∧ τ ) − Φ(0 , x ) − M ∗ = t ∧ τ Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 18/ 57

  17. Ruin Probility via Differential Equations Thus � t ∧ τ � t ∧ τ ∂ t Φ( s , X s ) ds + ∂ r Φ( s , X s ) b ( s , X s ) ds 0 0 � t ∧ τ � + [Φ( s , X s − − f ( s , z )) − Φ( s , X s − )] ν ( dz ) ds 0 R + Φ( t ∧ τ, X t ∧ τ ) − Φ(0 , x ) − M ∗ = t ∧ τ = 0 . (It is a continuous (local) martingale with zero mean and with bounded variation paths = ⇒ it is a zero martingale!) Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 18/ 57

  18. Ruin Probility via Differential Equations Thus � t ∧ τ � t ∧ τ ∂ t Φ( s , X s ) ds + ∂ r Φ( s , X s ) b ( s , X s ) ds 0 0 � t ∧ τ � + [Φ( s , X s − − f ( s , z )) − Φ( s , X s − )] ν ( dz ) ds 0 R + Φ( t ∧ τ, X t ∧ τ ) − Φ(0 , x ) − M ∗ = t ∧ τ = 0 . (It is a continuous (local) martingale with zero mean and with bounded variation paths = ⇒ it is a zero martingale!) Similarly, for any t ′ ∈ [0 , T ) and τ ′ = inf { t ≥ t ′ | X t < 0 } , one shows that � t ∧ τ ′ � t ∧ τ ′ ∂ t Φ( s , X s ) ds + ∂ r Φ( s , X s ) b ( s , X s ) ds (10) t ′ t ′ � t ∧ τ ′ � = [Φ( s , X s − ) − Φ( s , X s − − f ( s , z ))] ν ( dz ) ds . t ′ I R + Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 18/ 57

  19. Ruin Probility via Differential Equations Since t ′ is arbitrary and τ ′ ≥ t ′ , we can “ differentiating ” (10) to get the following IPDE: � [ ∂ t Φ + ∂ r Φ b ]( t , r ) = [Φ( t , r ) − Φ( t , r − f ( t , z ))] ν ( dz ) . (11) R + Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 19/ 57

  20. Ruin Probility via Differential Equations Since t ′ is arbitrary and τ ′ ≥ t ′ , we can “ differentiating ” (10) to get the following IPDE: � [ ∂ t Φ + ∂ r Φ b ]( t , r ) = [Φ( t , r ) − Φ( t , r − f ( t , z ))] ν ( dz ) . (11) R + Remark Since Φ( t , X t ) = 0 for X t < 0, the RHS in (11) is actually � [Φ( t , r ) − Φ( t , r − f ( t , z ))] ν ( dz ) . { r ≥ f ( t , z ) } Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 19/ 57

  21. Ruin Probility via Differential Equations Since t ′ is arbitrary and τ ′ ≥ t ′ , we can “ differentiating ” (10) to get the following IPDE: � [ ∂ t Φ + ∂ r Φ b ]( t , r ) = [Φ( t , r ) − Φ( t , r − f ( t , z ))] ν ( dz ) . (11) R + Remark Since Φ( t , X t ) = 0 for X t < 0, the RHS in (11) is actually � [Φ( t , r ) − Φ( t , r − f ( t , z ))] ν ( dz ) . { r ≥ f ( t , z ) } In the compound Poisson case f ( t , z ) ≡ z , ν ( dz ) = λ F Z ( dz ), where Z is the jump size. Thus (11) becomes � [ ∂ t Φ + ∂ r Φ b ]( t , r ) = Φ( t , r ) λ − λ Φ( t , r − z ) F Z ( dz ) . { r ≥ z } Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 19/ 57

  22. Special Cases Infinite horizon case Assume b ( t , r ) = b ( r ). Denote ψ ( r ) = lim t →∞ Ψ( t , r ) and ϕ ( r ) = 1 − ψ ( r ). Then � ϕ ′ ( r ) b ( r ) = ϕ ( r ) λ − λ ϕ ( r − z ) F Z ( dz ) . (12) { r ≥ z } Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 20/ 57

  23. Special Cases Infinite horizon case Assume b ( t , r ) = b ( r ). Denote ψ ( r ) = lim t →∞ Ψ( t , r ) and ϕ ( r ) = 1 − ψ ( r ). Then � ϕ ′ ( r ) b ( r ) = ϕ ( r ) λ − λ ϕ ( r − z ) F Z ( dz ) . (12) { r ≥ z } Example △ If b ( r ) = c (1 + ρ ) = β and Z ∼ exp { δ } Then (12) becomes � � r � ϕ ′ ( r ) β = λ ϕ ( r ) − e − δ r ϕ ( z ) δ e δ z dz . (13) 0 Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 20/ 57

  24. Special Cases Infinite horizon case Assume b ( t , r ) = b ( r ). Denote ψ ( r ) = lim t →∞ Ψ( t , r ) and ϕ ( r ) = 1 − ψ ( r ). Then � ϕ ′ ( r ) b ( r ) = ϕ ( r ) λ − λ ϕ ( r − z ) F Z ( dz ) . (12) { r ≥ z } Example △ If b ( r ) = c (1 + ρ ) = β and Z ∼ exp { δ } Then (12) becomes � � r � ϕ ′ ( r ) β = λ ϕ ( r ) − e − δ r ϕ ( z ) δ e δ z dz . (13) 0 Differentiating: ϕ ′′ ( r ) β = ( λ − δβ ) ϕ ′ ( r ). Solving: ϕ ( r ) = c 1 − c 2 e − ( δ − λ/β ) r , where c 1 , c 2 ∈ R . Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 20/ 57

  25. An Integral Equation Denoting β = c (1 + ρ ) again, and integrate (13) from 0 to x : � x β β ϕ ′ ( r ) dr λ ( ϕ ( x ) − ϕ (0)) = λ 0 � x � x � u = ϕ ( r ) dr − ϕ ( u − z ) F Z ( dz ) du 0 0 0 = · · · · · · � x � x � x − u = ϕ ( r ) dr − F Z ( dz ) ϕ ( u ) du 0 0 0 � x = [1 − F Z ( x − u )] ϕ ( u ) du . 0 � x ϕ ( x ) = ϕ (0) + λ ϕ ( x − z )¯ = ⇒ F Z ( z ) dz . (14) β 0 Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 21/ 57

  26. Lundberg bounds An Evidence Recall IDE (14). By Expected Value Principle c = dE [ S t ] = λµ , � x dt denoting F I ( x ) = µ − 1 ¯ F ( z ) dz (14) becomes 0 1 ϕ ( x ) = ϕ (0) + (1 + ρ ) ϕ ∗ F I ( x ) , (15) where ∗ means convolution. Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 22/ 57

  27. Lundberg bounds An Evidence Recall IDE (14). By Expected Value Principle c = dE [ S t ] = λµ , � x dt denoting F I ( x ) = µ − 1 ¯ F ( z ) dz (14) becomes 0 1 ϕ ( x ) = ϕ (0) + (1 + ρ ) ϕ ∗ F I ( x ) , (15) where ∗ means convolution. Solving (15) by Laplace transforms and using the initial value ρ ϕ (0) = 1+ ρ we have � � n ∞ � ρ 1 F n ∗ ϕ ( x ) = I ( x ) . (16) 1 + ρ 1 + ρ n =0 Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 22/ 57

  28. Lundberg Bounds Example If Z ∼ exp( δ ), then we see that � � 1 ρ ≤ e − Rx . ψ ( x ) = 1 − ϕ ( x ) = 1 + ρ exp − δ (1 + ρ ) x Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 23/ 57

  29. Lundberg Bounds Example If Z ∼ exp( δ ), then we see that � � 1 ρ ≤ e − Rx . ψ ( x ) = 1 − ϕ ( x ) = 1 + ρ exp − δ (1 + ρ ) x Remark A primitive method for the Lundberg bound is to consider ψ n ( x ), the ruin probability up to ( n + 1)-st claim. By an inductional argument one proves that, there exists an R > 0 such that ψ n ( x ) ≤ e − Rx , ∀ n . (17) Letting n → ∞ one derives the (upper) bound for (infinite horizon) ruin probability ψ ( x ). The constant R is called “ Lundberg coefficient ” or “ adjustment coefficients ”. Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 23/ 57

  30. Exponential Martingale Approach (Gerber, (1973)) Consider the classical model X t = x + ct − S t , where ct = E [ S t ] = λµ t . Denote Q t = ct − S t ( profit process ). Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 24/ 57

  31. Exponential Martingale Approach (Gerber, (1973)) Consider the classical model X t = x + ct − S t , where ct = E [ S t ] = λµ t . Denote Q t = ct − S t ( profit process ). For any given x and r > 0, consider the F p -adapted process = e − r ( x + Q t ) △ M x , t ≥ 0 , (18) t e t θ ( r ) where θ ( · ) is a function to be determined. Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 24/ 57

  32. Exponential Martingale Approach (Gerber, (1973)) Consider the classical model X t = x + ct − S t , where ct = E [ S t ] = λµ t . Denote Q t = ct − S t ( profit process ). For any given x and r > 0, consider the F p -adapted process = e − r ( x + Q t ) △ M x , t ≥ 0 , (18) t e t θ ( r ) where θ ( · ) is a function to be determined. Suppose that { M x t } is an F p -martingale(!) Then, by optional sampling, for any given time t 0 > 0 and stopping △ time τ x = inf { t ≥ 0 : X t = x + Q t < 0 } , one has � � � � � � e − rx � F p M x M x M x = 0 = E = E (19) t 0 ∧ τ x 0 t 0 ∧ τ x � � � � M x ≥ E � τ x ≤ t 0 P { τ x ≤ t 0 } . τ x Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 24/ 57

  33. Exponential Martingale Approach (Gerber, (1973)) But on the set { τ x ≤ t 0 } one must have X τ x = x + Q τ x ≤ 0. Thus e − rx e − rx P { τ x ≤ t 0 } ≤ τ x | τ x ≤ t 0 } ≤ E { M x E { e − τ x θ ( r ) | τ x ≤ t 0 } e − rx e t θ ( r ) . ≤ sup 0 ≤ t ≤ t 0 Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 25/ 57

  34. Exponential Martingale Approach (Gerber, (1973)) But on the set { τ x ≤ t 0 } one must have X τ x = x + Q τ x ≤ 0. Thus e − rx e − rx P { τ x ≤ t 0 } ≤ τ x | τ x ≤ t 0 } ≤ E { M x E { e − τ x θ ( r ) | τ x ≤ t 0 } e − rx e t θ ( r ) . ≤ sup 0 ≤ t ≤ t 0 Letting t 0 → ∞ we obtain that ψ ( x ) ≤ e − rx sup e t θ ( r ) . (20) t ≥ 0 Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 25/ 57

  35. Exponential Martingale Approach (Gerber, (1973)) But on the set { τ x ≤ t 0 } one must have X τ x = x + Q τ x ≤ 0. Thus e − rx e − rx P { τ x ≤ t 0 } ≤ τ x | τ x ≤ t 0 } ≤ E { M x E { e − τ x θ ( r ) | τ x ≤ t 0 } e − rx e t θ ( r ) . ≤ sup 0 ≤ t ≤ t 0 Letting t 0 → ∞ we obtain that ψ ( x ) ≤ e − rx sup e t θ ( r ) . (20) t ≥ 0 Question How to determine θ ? Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 25/ 57

  36. Exponential Martingale Approach (Gerber, (1973)) Analysis � ∞ Denote ˆ 0 e − sx dF ( x ) = E [ e − sU 1 ]. Then f ( s ) = � � e sS t � ∞ � � � e s � Nt � k =1 U k E = E � N t = n P ( N t = n ) n =0 ∞ � f n ( − s )( λ t ) n e − λ t = e λ (ˆ ˆ f ( − s ) − 1) t = n ! n =0 Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 26/ 57

  37. Exponential Martingale Approach (Gerber, (1973)) Analysis � ∞ Denote ˆ 0 e − sx dF ( x ) = E [ e − sU 1 ]. Then f ( s ) = � � e sS t � ∞ � � � e s � Nt � k =1 U k E = E � N t = n P ( N t = n ) n =0 ∞ � f n ( − s )( λ t ) n e − λ t = e λ (ˆ ˆ f ( − s ) − 1) t = n ! n =0 Thus to make M x a martingale, one need only choose � e − sQ t � � e sS t � f ( − s ) − 1] t △ = e − sct + λ [ˆ = e − sct E = e t θ ( s ) , (21) E △ = λ [ˆ where θ ( s ) f ( − s ) − 1] − sc . Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 26/ 57

  38. Exponential Martingale Approach (Gerber, (1973)) With this choice of θ , and using (21) and the fact that Q has independent increments, we have � � � � e − r ( Q t − Q s ) � E [ M x t | F p s ] = M x � F p = M x s E s . � s e ( t − s ) θ ( r ) ⇒ M x is a F p -martingale! = Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 27/ 57

  39. Exponential Martingale Approach (Gerber, (1973)) With this choice of θ , and using (21) and the fact that Q has independent increments, we have � � � � e − r ( Q t − Q s ) � E [ M x t | F p s ] = M x � F p = M x s E s . � s e ( t − s ) θ ( r ) ⇒ M x is a F p -martingale! = Recall (20). Clearly the sharp estimate of ruin probability is obtained by minimizing the RHS w.r.t. r . Namely, choosing r ∗ △ = sup { r : θ ( r ) ≤ 0 } would give the best estimate ψ ( x ) ≤ e − r ∗ t . (22) r ∗ is thus called Lundberg coefficient . Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 27/ 57

  40. Another look at Exponential Martingales Consider the more general model: � t � t � X t = x + b ( s , X s ) ds − f ( s , z ) N p ( dsdz ) . (23) 0 0 R + Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 28/ 57

  41. Another look at Exponential Martingales Consider the more general model: � t � t � X t = x + b ( s , X s ) ds − f ( s , z ) N p ( dsdz ) . (23) 0 0 R + For any g ∈ C 1 , 1 ([0 , T ] × R ), applying Itˆ o’s formula to get � t g ( t , X t ) = g (0 , x ) + { ∂ t g + ∂ x gb } ( s , X s ) ds 0 � t � . + [ g ( s , X s − − f ( s , z )) − g ( s , X s − )] ν ( dz ) ds + mg 0 R + Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 28/ 57

  42. Another look at Exponential Martingales Consider the more general model: � t � t � X t = x + b ( s , X s ) ds − f ( s , z ) N p ( dsdz ) . (23) 0 0 R + For any g ∈ C 1 , 1 ([0 , T ] × R ), applying Itˆ o’s formula to get � t g ( t , X t ) = g (0 , x ) + { ∂ t g + ∂ x gb } ( s , X s ) ds 0 � t � . + [ g ( s , X s − − f ( s , z )) − g ( s , X s − )] ν ( dz ) ds + mg 0 R + △ Thus M t = g ( t , X t ) is a mg (or local mg) ⇐ ⇒ g satisfies � ∂ t g + ∂ x gb + [ g ( t , x − f ( t , z )) − g ( t , x )] ν ( dz ) = 0 . (24) R + Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 28/ 57

  43. Another look at Exponential Martingales In the compound Poisson case b ( t , x ) = β , f ≡ z , and ν ( dz ) = λ F U ( dz ). The equation (24) becomes �� � [ ∂ t g + ∂ x g ] β + λ [ g ( t , x − z ) − g ( t , x )] F U ( dz ) = 0 . R + If g = g ( x ), then �� � g ′ ( x ) β + λ g ( x − z ) F U ( dz ) − g ( x ) = 0 . (25) R + Setting g ( x ) = ϕ ( x ) for x ≥ 0 and g ( x ) = 0 for x < 0 we see that � x the integral becomes 0 g ( x − z ) F U ( dz ) and we recover (14) for the infinite horizon ruin probability. Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 29/ 57

  44. Finite Horizon Case Assume g ( t , x ) = e − sx − θ t , where s and θ are parameters. Then (25) reads �� � [ e sz F U ( dz ) − 1] g ( t , x ) [ − θ − β s ] g ( t , x ) + λ = 0 . R + Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 30/ 57

  45. Finite Horizon Case Assume g ( t , x ) = e − sx − θ t , where s and θ are parameters. Then (25) reads �� � [ e sz F U ( dz ) − 1] g ( t , x ) [ − θ − β s ] g ( t , x ) + λ = 0 . R + � R + e sz F U ( dz ), then the above becomes Denoting ˆ m U ( s ) = {− θ − β s + λ [ ˆ m U ( s ) − 1] } g ( t , x ) = 0 . Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 30/ 57

  46. Finite Horizon Case Assume g ( t , x ) = e − sx − θ t , where s and θ are parameters. Then (25) reads �� � [ e sz F U ( dz ) − 1] g ( t , x ) [ − θ − β s ] g ( t , x ) + λ = 0 . R + � R + e sz F U ( dz ), then the above becomes Denoting ˆ m U ( s ) = {− θ − β s + λ [ ˆ m U ( s ) − 1] } g ( t , x ) = 0 . Thus (since g ( t , x ) > 0!) θ = θ ( s ) = − β s + λ [ ˆ m U ( s ) − 1] . (26) We obtain the adjustment coefficient θ = θ ( s ), and M t = g ( t , X t ) = exp {− sX t − θ ( s ) t } is a martingale! Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 30/ 57

  47. Risk Reserve with Interests Consider the reserve equation with interst: X 0 = x � dX t = [ r t X t + c t (1 + ρ t )] dt − f ( t , z ) N p ( dzdt ) . R + Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 31/ 57

  48. Risk Reserve with Interests Consider the reserve equation with interst: X 0 = x � dX t = [ r t X t + c t (1 + ρ t )] dt − f ( t , z ) N p ( dzdt ) . R + � t △ 0 r s ds , and � X t = Γ t X t . Then � = e − Denote Γ t X satisfies � t � t � � X t = x + Γ s c s (1 + ρ s ) ds − Γ s f ( s , z ) N p ( dzds ) . 0 0 R + Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 31/ 57

  49. Risk Reserve with Interests Consider the reserve equation with interst: X 0 = x � dX t = [ r t X t + c t (1 + ρ t )] dt − f ( t , z ) N p ( dzdt ) . R + � t △ 0 r s ds , and � X t = Γ t X t . Then � = e − Denote Γ t X satisfies � t � t � � X t = x + Γ s c s (1 + ρ s ) ds − Γ s f ( s , z ) N p ( dzds ) . 0 0 R + Assume β = c (1 + ρ ) is constant, and r t is deterministic, Then for g ∈ C 1 , 1 ( R + × R ), we have � t g ( t , � [ ∂ t g + ∂ x g Γ s β ]( s , � X t ) = g (0 , x ) + X s ) ds 0 � t � [ g ( · , · − Γ s f ) − g ]( s , � . + X s − ) ν ( dz ) ds + mg 0 R + Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 31/ 57

  50. Risk Reserve with Interests Thus M t = g ( t , � X t ) is a martingale if and only if � [ ∂ t g + ∂ x g β Γ t ] + [ g ( t , x − Γ t f ) − g ( t , x )] ν ( dz ) = 0 . R + Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 32/ 57

  51. Risk Reserve with Interests Thus M t = g ( t , � X t ) is a martingale if and only if � [ ∂ t g + ∂ x g β Γ t ] + [ g ( t , x − Γ t f ) − g ( t , x )] ν ( dz ) = 0 . R + Assume that g ( t , x ) = a ( t ) e − sx , a ( t ) > 0 to be determined, and f ≡ z and ν ( dz ) = λ F U ( dz ), then the above becomes 0 = a ′ ( t ) e − sx + {− β s Γ t + λ [ ˆ m ( s Γ t ) − 1] } g ( t , x ) � � a ′ ( t ) − θ ( s Γ t ) a ( t ) e − sx . = Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 32/ 57

  52. Risk Reserve with Interests Thus M t = g ( t , � X t ) is a martingale if and only if � [ ∂ t g + ∂ x g β Γ t ] + [ g ( t , x − Γ t f ) − g ( t , x )] ν ( dz ) = 0 . R + Assume that g ( t , x ) = a ( t ) e − sx , a ( t ) > 0 to be determined, and f ≡ z and ν ( dz ) = λ F U ( dz ), then the above becomes 0 = a ′ ( t ) e − sx + {− β s Γ t + λ [ ˆ m ( s Γ t ) − 1] } g ( t , x ) � � a ′ ( t ) − θ ( s Γ t ) a ( t ) e − sx . = Assume a (0) = 1. We can solve the ODE a ′ ( t ) + θ ( s Γ t ) a ( t ) = 0 , t ≥ 0 � t to get a ( t ) = e − 0 θ ( s Γ u ) du . Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 32/ 57

  53. Risk Reserve with Interests Thus M t = g ( t , � X t ) is a martingale if and only if � [ ∂ t g + ∂ x g β Γ t ] + [ g ( t , x − Γ t f ) − g ( t , x )] ν ( dz ) = 0 . R + Assume that g ( t , x ) = a ( t ) e − sx , a ( t ) > 0 to be determined, and f ≡ z and ν ( dz ) = λ F U ( dz ), then the above becomes 0 = a ′ ( t ) e − sx + {− β s Γ t + λ [ ˆ m ( s Γ t ) − 1] } g ( t , x ) � � a ′ ( t ) − θ ( s Γ t ) a ( t ) e − sx . = Assume a (0) = 1. We can solve the ODE a ′ ( t ) + θ ( s Γ t ) a ( t ) = 0 , t ≥ 0 � t to get a ( t ) = e − 0 θ ( s Γ u ) du . � t △ Thus ˜ = g ( t , � X t ) = exp {− s � M t X t − 0 θ ( s Γ u ) du } is a mg. Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 32/ 57

  54. Lundberg Bounds for General Models Question: Can we find an exponential martingale that leads to the Lundberg bound for the general reserve model (2)? Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 33/ 57

  55. Lundberg Bounds for General Models Question: Can we find an exponential martingale that leads to the Lundberg bound for the general reserve model (2)? Recall the exponential martingale � � � △ � = exp {− I s ( t , X t ) − K s M t = exp − s Γ t X t − θ ( s Γ u ) du t } . R + � △ = sx Γ t and K s where I s ( t , x ) t = R + θ ( s Γ u ) du . Define � t β t = − 0 r s ds , t ≥ 0 � t △ 0 r s ds = δ x Γ t = δ xe β t , δ ∈ R . = δ xe − I δ ( t , x ) � X t = e β t X t = Γ t X t (discounted risk reserve). Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 33/ 57

  56. Lundberg Bounds for General Models In general, we replace s by a parameter δ , and look for a possible exponential mg M δ = exp { I δ + K δ } , where I δ ( t , X t ) = δ � X t , and � X satisfies: d ˜ Γ t ( � b ( t , β t , � X t = X t ) + η t ) dt + � ˆ σ t , dW t � � − R + Γ t f ( t , x ) N p ( dtdx ) , where � b ( t , β t , � X t ) = b ( t , e − β t � X t )) = b ( t , X t ). Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 34/ 57

  57. Lundberg Bounds for General Models In general, we replace s by a parameter δ , and look for a possible exponential mg M δ = exp { I δ + K δ } , where I δ ( t , X t ) = δ � X t , and � X satisfies: d ˜ Γ t ( � b ( t , β t , � X t = X t ) + η t ) dt + � ˆ σ t , dW t � � − R + Γ t f ( t , x ) N p ( dtdx ) , where � b ( t , β t , � X t ) = b ( t , e − β t � X t )) = b ( t , X t ). � △ R + [ e γ f ( t , z ) − 1] ν ( dz ). To “decompose K δ , define m f t ( γ ) = Then m f ( γ ) is increasing in γ and integrable for all γ ≤ δ 0 . Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 34/ 57

  58. Lundberg Bounds for General Models In general, we replace s by a parameter δ , and look for a possible exponential mg M δ = exp { I δ + K δ } , where I δ ( t , X t ) = δ � X t , and � X satisfies: d ˜ Γ t ( � b ( t , β t , � X t = X t ) + η t ) dt + � ˆ σ t , dW t � � − R + Γ t f ( t , x ) N p ( dtdx ) , where � b ( t , β t , � X t ) = b ( t , e − β t � X t )) = b ( t , X t ). � △ R + [ e γ f ( t , z ) − 1] ν ( dz ). To “decompose K δ , define m f t ( γ ) = Then m f ( γ ) is increasing in γ and integrable for all γ ≤ δ 0 . In compound Poisson case, f ≡ z and ν ( dz ) = λ F U ( dz ), then � △ R + [ e γ z − 1] F U ( dz ) = λ ( ˆ m f t ( γ ) = λ m U ( γ ) − 1), again. Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 34/ 57

  59. Lundberg Bounds for General Models Now define K δ t = − V δ t + 1 2 Y δ t + Z δ t , where � t V δ e β s [ � b ( s , β s , � t = δ X s ) + η s ] ds ; 0 � t � t △ Y δ t = δ 2 e 2 β s | ˆ σ s | 2 ds ; Z δ m f s ( δ e β s ) ds . = t 0 0 � t △ Define also Z δ, 0 m f = s ( δ ) ds , and t 0 � D = { δ ≥ 0 : Z δ t < ∞ , P -a.s., ∀ t ≥ 0 } ; D 0 = { δ ≥ 0 : Z δ, 0 < ∞ , P -a.s., ∀ t ≥ 0 } . t Since γ ≥ 0 and β s ≤ 0, the monotonicity of m f ( · ) shows that D 0 ⊆ D . Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 35/ 57

  60. Main Results Theorem (M. Sun (02)) △ = exp {− δ � The process M δ X t − K δ t } , t ≥ 0 , enjoys the following t properties: For every δ ∈ D , { M δ t : t ≥ 0 } is an F -local martingale. If the processes π , σ , µ , and r are all bounded and F W -adapted, and that f ( · , · , · ) is deterministic, then for every δ ∈ D 0 , { M δ t : t ≥ 0 } is an F -martingale. If r is also deterministic, then (ii) holds for all δ ∈ D . If π is allowed to be F -adapted, then (ii) and (iii) hold for all δ such that 2 δ ∈ D and D 0 , respectively. Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 36/ 57

  61. Main Results Theorem (M. Sun (02)) △ = exp {− δ � The process M δ X t − K δ t } , t ≥ 0 , enjoys the following t properties: For every δ ∈ D , { M δ t : t ≥ 0 } is an F -local martingale. If the processes π , σ , µ , and r are all bounded and F W -adapted, and that f ( · , · , · ) is deterministic, then for every δ ∈ D 0 , { M δ t : t ≥ 0 } is an F -martingale. If r is also deterministic, then (ii) holds for all δ ∈ D . If π is allowed to be F -adapted, then (ii) and (iii) hold for all δ such that 2 δ ∈ D and D 0 , respectively. △ = exp( − δ x + v − 1 Proof: Define F δ ( x , v , y , z ) 2 y − z ), and o’s formula to F δ ( � X t , V δ t , Y δ t , Z δ applying Itˆ t )... Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 36/ 57

  62. Main Results Example Classical Model π t ≡ 0 , r t ≡ 0 , ρ ≡ 0 , µ t ≡ 0 , σ t ≡ 0, S t is Compound Poisson � ∞ 0 ( e δ x − 1) λ F ( dx ) − c δ ) (= θ ( δ ) t !) K δ t = t ( � δ = sup { δ : θ ( δ ) ≤ 0 } = r ∗ Lundberg Exponent Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 37/ 57

  63. Main Results Example Classical Model π t ≡ 0 , r t ≡ 0 , ρ ≡ 0 , µ t ≡ 0 , σ t ≡ 0, S t is Compound Poisson � ∞ 0 ( e δ x − 1) λ F ( dx ) − c δ ) (= θ ( δ ) t !) K δ t = t ( � δ = sup { δ : θ ( δ ) ≤ 0 } = r ∗ Lundberg Exponent Discounted Risk Reserve π t = ρ t = µ t = σ t ≡ 0, r > 0 S t is Compound Poisson � t � ∞ K δ 0 [exp( δ e − rs x ) − 1] λ F ( dx ) − ce − r s } ds t = 0 { � δ = sup { δ ≥ 0 : sup t ≥ 0 K δ t < ∞} Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 37/ 57

  64. Main Results Example Classical Model π t ≡ 0 , r t ≡ 0 , ρ ≡ 0 , µ t ≡ 0 , σ t ≡ 0, S t is Compound Poisson � ∞ 0 ( e δ x − 1) λ F ( dx ) − c δ ) (= θ ( δ ) t !) K δ t = t ( � δ = sup { δ : θ ( δ ) ≤ 0 } = r ∗ Lundberg Exponent Discounted Risk Reserve π t = ρ t = µ t = σ t ≡ 0, r > 0 S t is Compound Poisson � t � ∞ K δ 0 [exp( δ e − rs x ) − 1] λ F ( dx ) − ce − r s } ds t = 0 { � δ = sup { δ ≥ 0 : sup t ≥ 0 K δ t < ∞} Perturbed risk reserve π t ≡ 1, ρ t = r t = µ t ≡ 0, σ t ≡ ε , X t = x + ct + ε W t − S t � ∞ 2 δ 2 ε 2 + 0 ( e δ x − 1) λ F ( dx )) △ K δ t = t ( − c δ + 1 = k ( δ ) t △ � δ = sup { δ > 0 : k ( δ ) = 0 } (Delbaen-Haezendonck (1987), ...) Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 37/ 57

  65. Ruin Probability via “Rate Functions” Extending the idea of the function I δ ( t , x ) = δ x β t , we can consider a more general “rate function”: I ∈ C 1 , 2 ( R + × R ). Define t + 1 △ △ M I = exp {− I ( t , X t ) − K I t } , K I = − V I 2 Y I t + Z I t , and t t � t � △ Z I = R + [exp { I ( s , X s ) − I ( s , X s − f ( s , x )) } − 1] v ( dx ) ds t 0 � t △ V I = { ∂ x I ( s , X s ) b ( s , X s ) + ∂ t I ( s , X s ) } ds t 0 � t △ { ( ∂ x I ( s , X s )) 2 − ∂ 2 Y I σ s | 2 ds = xx I ( s , X s ) }| ˆ t 0 Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 38/ 57

  66. Ruin Probability via “Rate Functions” Extending the idea of the function I δ ( t , x ) = δ x β t , we can consider a more general “rate function”: I ∈ C 1 , 2 ( R + × R ). Define t + 1 △ △ M I = exp {− I ( t , X t ) − K I t } , K I = − V I 2 Y I t + Z I t , and t t � t � △ Z I = R + [exp { I ( s , X s ) − I ( s , X s − f ( s , x )) } − 1] v ( dx ) ds t 0 � t △ V I = { ∂ x I ( s , X s ) b ( s , X s ) + ∂ t I ( s , X s ) } ds t 0 � t △ { ( ∂ x I ( s , X s )) 2 − ∂ 2 Y I σ s | 2 ds = xx I ( s , X s ) }| ˆ t 0 Definition A function I ∈ C 1 , 2 ( R + × R ) is called a “rate function” if Z I t < ∞ , ∀ t ≥ 0 , P-almost surely. Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 38/ 57

  67. Analysis Suppose that we can find I such that M I is a local martingale, and that I ( t , x ) ≤ 0, for all t and x ≤ 0. △ Let τ = inf { t , X t < 0 } , and apply Optional Sampling to supermartingale (nonnegative loc mg) M I t : E { e − I ( τ, X τ ) − K I e − I (0 , x ) τ | τ < T } P { τ < T } ≥ � � 0 ≤ t ≤ T e − K I ≥ E inf ψ ( x , T ) . t Applying Jensen’s inequality we have � � e − I (0 , x ) e K I � ≤ e − I (0 , x ) E � ψ ( x , T ) ≤ sup . t 0 ≤ t ≤ T e − K I E inf 0 ≤ t ≤ T t One can let T → ∞ to obtain the bound for ψ ( x ). Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 39/ 57

  68. Ruin Probability via “Rate Functions” Theorem For any rate function I, { M I t : t ≥ 0 } is an F -local martingale. Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 40/ 57

  69. Ruin Probability via “Rate Functions” Theorem For any rate function I, { M I t : t ≥ 0 } is an F -local martingale. (Lundberg Bounds) If the rate function I satisfies I ( t , x ) ≤ 0 , for all t and x ≤ 0 . Then, it holds that e − I (0 , x ) E exp( K I ψ ( x , T ) ≤ sup t ) , 0 ≤ t ≤ T e − I (0 , x ) E sup exp( K I ψ ( x ) ≤ t ) . t ≥ 0 Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 40/ 57

  70. Ruin Probability via “Rate Functions” Theorem For any rate function I, { M I t : t ≥ 0 } is an F -local martingale. (Lundberg Bounds) If the rate function I satisfies I ( t , x ) ≤ 0 , for all t and x ≤ 0 . Then, it holds that e − I (0 , x ) E exp( K I ψ ( x , T ) ≤ sup t ) , 0 ≤ t ≤ T e − I (0 , x ) E sup exp( K I ψ ( x ) ≤ t ) . t ≥ 0 In the Lundberg bounds above the process K I ( X ) can be △ replaced by K I ( X + ) , where X + = X s ∨ 0 . s Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 40/ 57

  71. Ruin Probability via “Rate Functions” Theorem For any rate function I, { M I t : t ≥ 0 } is an F -local martingale. (Lundberg Bounds) If the rate function I satisfies I ( t , x ) ≤ 0 , for all t and x ≤ 0 . Then, it holds that e − I (0 , x ) E exp( K I ψ ( x , T ) ≤ sup t ) , 0 ≤ t ≤ T e − I (0 , x ) E sup exp( K I ψ ( x ) ≤ t ) . t ≥ 0 In the Lundberg bounds above the process K I ( X ) can be △ replaced by K I ( X + ) , where X + = X s ∨ 0 . s Question: How to find a rate function? Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 40/ 57

  72. Asmussen-Nielsen Bound Assume Compound Poisson ( f ( t , x ) = x , and v ( dx ) = λ F ( dx )), and π ≡ 0, µ ≡ 0, σ ≡ 0, r t = r (constant), ρ ( t , x ) ≡ ρ ( x ) is an increasing function in x . Then � t � t � X t = x + p ( X s ) ds + R + x µ ( dxds ), t ≥ 0, 0 0 △ where p ( x ) = rx + c (1 + ρ ( x )). Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 41/ 57

  73. Asmussen-Nielsen Bound Assume Compound Poisson ( f ( t , x ) = x , and v ( dx ) = λ F ( dx )), and π ≡ 0, µ ≡ 0, σ ≡ 0, r t = r (constant), ρ ( t , x ) ≡ ρ ( x ) is an increasing function in x . Then � t � t � X t = x + p ( X s ) ds + R + x µ ( dxds ), t ≥ 0, 0 0 △ where p ( x ) = rx + c (1 + ρ ( x )). � x Consider the Rate function of the form: I ( x ) = γ ( y ) dy , 0 x ≥ 0, γ ( · ) > 0, increasing. Then � t � � X + � � � � s − x γ ( y ) dy − 1 s K I − [ γ p ]( X + X + t = s ) + e λ F ( dx ) ds 0 R + � t � � � s ) x − 1] λ F ( dx ) R + [ e γ ( X + − [ γ p ]( X + ≤ s ) + ds . 0 Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 41/ 57

  74. Asmussen-Nielsen Bound Let γ be the non-decreasing solution to the Lundberg equation: � R + [ e γ x − 1] λ F ( dx ) = 0 , − γ p ( y ) + y ≥ 0 . (such solution exists if the so-called net profit condition: inf x ≥ 0 p ( x ) > λ E [ U 1 ] holds and ρ is monotone.) Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 42/ 57

  75. Asmussen-Nielsen Bound Let γ be the non-decreasing solution to the Lundberg equation: � R + [ e γ x − 1] λ F ( dx ) = 0 , − γ p ( y ) + y ≥ 0 . (such solution exists if the so-called net profit condition: inf x ≥ 0 p ( x ) > λ E [ U 1 ] holds and ρ is monotone.) One can show that if p ( · ) ∈ C 1 , then I can be extended so that I ( · ) ∈ C 2 ( R ), I (0) = 0, and I ( x ) ≤ 0 for x < 0. Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 42/ 57

  76. Asmussen-Nielsen Bound Let γ be the non-decreasing solution to the Lundberg equation: � R + [ e γ x − 1] λ F ( dx ) = 0 , − γ p ( y ) + y ≥ 0 . (such solution exists if the so-called net profit condition: inf x ≥ 0 p ( x ) > λ E [ U 1 ] holds and ρ is monotone.) One can show that if p ( · ) ∈ C 1 , then I can be extended so that I ( · ) ∈ C 2 ( R ), I (0) = 0, and I ( x ) ≤ 0 for x < 0. t ( X + ) ≤ 0, ∀ t ≥ 0, and we have Thus K I ψ ( x , T ) ≤ e − I ( x ) ψ ( x ) ≤ e − I ( x ) . and This is the Asmussen and Nielsen bound (1995). Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 42/ 57

  77. Can We Do Better? Assume now ρ ( x ) ≡ 0, and F ( x ) = 1 − e − θ x , x ≥ 0. Then the Asmussen-Nielsen bound tells us: ψ ( x ) ≤ e − θ x � � λ 1 + r r , c x x ≥ 0 . Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 43/ 57

  78. Can We Do Better? Assume now ρ ( x ) ≡ 0, and F ( x ) = 1 − e − θ x , x ≥ 0. Then the Asmussen-Nielsen bound tells us: ψ ( x ) ≤ e − θ x � � λ 1 + r r , c x x ≥ 0 . Let us consider a new rate function: for b ∈ C 2 , I ( y ) = − log b ( y ) 1 [0 , ∞ ) ( y ) , Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 43/ 57

  79. Can We Do Better? Assume now ρ ( x ) ≡ 0, and F ( x ) = 1 − e − θ x , x ≥ 0. Then the Asmussen-Nielsen bound tells us: ψ ( x ) ≤ e − θ x � � λ 1 + r r , c x x ≥ 0 . Let us consider a new rate function: for b ∈ C 2 , I ( y ) = − log b ( y ) 1 [0 , ∞ ) ( y ) , � t Denote K I ( X + ) = 0 L [ I ]( X + s ) ds , where L is an ID operator: � ∞ △ [ e I ( y ) − I ( y − x ) − 1] λθ e − θ x dx . = − I ′ ( y )[ ry + c ] + L [ I ]( y ) 0 Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 43/ 57

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend