field theory approach to equilibrium critical phenomena
play

Field Theory Approach to Equilibrium Critical Phenomena Uwe C. T - PowerPoint PPT Presentation

Field Theory Approach to Equilibrium Critical Phenomena Uwe C. T auber Department of Physics (MC 0435), Virginia Tech Blacksburg, Virginia 24061, USA email: tauber@vt.edu http://www.phys.vt.edu/~tauber/utaeuber.html Renormalization Methods


  1. Field Theory Approach to Equilibrium Critical Phenomena Uwe C. T¨ auber Department of Physics (MC 0435), Virginia Tech Blacksburg, Virginia 24061, USA email: tauber@vt.edu http://www.phys.vt.edu/~tauber/utaeuber.html Renormalization Methods in Statistical Physics and Lattice Field Theories Montpellier, 24–28 August 2015

  2. Lecture 1: Critical Scaling: Mean-Field Theory, Real-Space RG Ising model: mean-field theory Real-space renormalization group Landau theory for continuous phase transitions Scaling theory Lecture 2: Momentum Shell Renormalization Group Landau–Ginzburg–Wilson Hamiltonian Gaussian approximation Wilson’s momentum shell renormalization group Dimensional expansion and critical exponents Lecture 3: Field Theory Approach to Critical Phenomena Perturbation expansion and Feynman diagrams Ultraviolet and infrared divergences, renormalization Renormalization group equation and critical exponents Recent developments

  3. Lecture 1: Critical Scaling: Mean-Field Theory, Real-Space RG

  4. Ferromagnetic Ising model Principal task of statistical mechanics: understand macroscopic properties of matter (interacting many-particle systems): → thermodynamic phases and phase transitions Phase transitions at temperature T > 0 driven by competition between energy E minimization and entropy S maximization: minimize free energy F = E − T S Example: Ising model for N “spin” variables σ i = ± 1 with ferromagnetic exchange couplings J ij > 0 in external field h : N N ∑ ∑ H ( { σ i } ) = − 1 J ij σ i σ j − h σ i 2 i , j =1 i =1 Goal: partition function Z ( T , h , N ) = ∑ { σ i = ± 1 } e − H ( { σ i } ) / k B T , free energy F ( T , h , N ) = − k B T ln Z ( T , h , N ), thermal averages : ∑ ⟨ ⟩ 1 A ( { σ i } ) e − H ( { σ i } ) / k B T A ( { σ i } ) = Z ( T , h , N ) { σ i = ± 1 }

  5. Curie–Weiss mean-field theory Mean-field approximation : replace effective local field with average: ∑ ∑ h eff , i = − ∂ H J ij σ j → h + � Jm , � = h + J = J ( x i ) , m = ⟨ σ i ⟩ ∂σ i j i More precisely: σ i = m + ( σ i − ⟨ σ i ⟩ ) → σ i σ j = m 2 + m ( σ i − ⟨ σ i ⟩ + σ j − ⟨ σ j ⟩ ) + ( σ i − ⟨ σ i ⟩ )( σ j − ⟨ σ j ⟩ ) Neglect fluctuations / spatial correlations → ( ) H ≈ Nm 2 � ) N ∑ 2 cosh h + � N ( J Jm σ i , Z ≈ e − Nm 2 � h + � J / 2 k B T − Jm 2 k B T i =1 yields Curie–Weiss equation of state ( ∂ F mf ) = tanh h + � m ( T , h ) = − 1 J m ( T , h ) N ∂ h k B T T , N ◮ Solution for large T : disordered, paramagnetic phase m = 0 ◮ T < T c = � J / k B : ordered, ferromagnetic phase m ̸ = 0 ◮ Spontaneous symmetry breaking at critical point T c , h = 0

  6. Mean-field critical power laws Expand equation of state near T c : | τ | = | T − T c | ≪ 1 and h ≪ � J → | m | ≪ 1: T c ≈ τ m + m 3 h → k B T c 3 T = T c : h ≈ k B T c ◮ critical isotherm : m 3 3 ◮ coexistence curve : h = 0 , T < T c : m ≈ ± ( − 3 τ ) 1 / 2 ◮ isothermal susceptibility : ( ∂ m ) { 1 /τ 1 N 1 N τ > 0 χ T = N ≈ τ + m 2 ≈ 1 / 2 | τ | 1 τ < 0 ∂ h k B T c k B T c T → Power law singularities in the vicinity of the critical point Deficiencies of mean-field approximation: ◮ predicts transition in any spatial dimension d , but Ising model does not display long-range order at d = 1 for T > 0 ◮ experimental critical exponents differ from mean-field values ◮ origin: diverging susceptibility indicates strong fluctuations

  7. Real-space renormalization group: Ising chain Partition sum for h = 0, K = J / k B T : a a´ K K K K K K ∑ e K ∑ N σ σ σ i =1 σ i σ i +1 ... ... Z ( K , N ) = i-1 i i+1 “ decimation ” of σ i , σ i +2 , . . . { σ i = ± 1 } { 2 cosh 2 K σ i − 1 σ i +1 = +1 } ∑ e K σ i ( σ i − 1 + σ i +1 ) = = e 2 g + K ′ σ i − 1 σ i +1 2 σ i − 1 σ i +1 = − 1 σ i = ± 1 ( ) K ′ = 1 2 ln cosh 2 K , N → Z ( K , N ) = Z 2 ℓ decimations: N ( ℓ ) = N / 2 ℓ , a ( ℓ ) = 2 ℓ a , RG recursion : K ( ℓ ) = 1 2 ln cosh 2 K ( ℓ − 1) Fixed points → phases, phase transition: ◮ K ∗ = 0 stable → T = ∞ , disordered ◮ K ∗ = ∞ unstable → T = 0, ordered T → 0: expand K ′− 1 ≈ K − 1 ( ) dK − 1 ( ℓ ) 1 + ln 2 ≈ ln 2 2 K − 1 ( ℓ ) 2 → ( ) 2 K d ℓ ℓ = ln(2 ξ/ a ) ≈ 0 → ξ ( T ) ≈ a 2 e 2 J / k B T Correlation length : K ln 2

  8. Real-space RG for the Ising square lattice ∑ − β H ( { σ i } ) = K σ i σ j a´a n . n . ( i , j ) → − β H ′ ( { σ i } ) = A ′ + K ′ ∑ K L´ σ i σ j K´ K n . n . ( i , j ) + L ′ ∑ σ i σ j + M ′ ∑ σ i σ j σ k σ l n . n . n . ( i , j ) � ( i , j , k , l ) 2 cosh K ( σ 1 + σ 2 + σ 3 + σ 4 ) = = e A ′ + 1 2 K ′ ( σ 1 σ 2 + σ 2 σ 3 + σ 3 σ 4 + σ 4 σ 1 )+ L ′ ( σ 1 σ 3 + σ 2 σ 4 )+ M ′ σ 1 σ 2 σ 3 σ 4 List possible configurations for four nearest neighbors of given spin: σ 1 σ 2 σ 3 σ 4 → 2 cosh 4 K = e A ′ +2 K ′ +2 L ′ + M ′ + + + + → 2 cosh 2 K = e A ′ − M ′ + + + − → 2 = e A ′ − 2 L ′ + M ′ + + − − + − + − → 2 = e A ′ − 2 K ′ +2 L ′ + M ′

  9. RG recursion relations K ′ = 1 4 ln cosh 4 K ≈ 2 K 2 + O ( K 4 ) L ′ = K ′ 2 = 1 8 ln cosh 4 K ≈ K 2 A ′ = L ′ + 1 2 ln 4 cosh 2 K ≈ ln 2 + 2 K 2 M ′ = A ′ − ln 2 cosh 2 K ≈ 0 → drop [ K ( ℓ − 1) ] 2 + L ( ℓ − 1) , L ( ℓ ) ≈ [ K ( ℓ − 1) ] 2 → a ( ℓ ) = 2 ℓ/ 2 a , K ( ℓ ) ≈ 2 ◮ K ∗ = 0 = L ∗ stable → T = ∞ : disordered paramagnet ◮ K ∗ = ∞ = L ∗ stable → T = 0: ordered ferromagnet ◮ K ∗ c = 1 / 3, L ∗ c = 1 / 9 unstable: critical fixed point ( δ K ( ℓ ) = K ( ℓ ) − K ∗ ) ( 4 / 3 ) ( δ K ( ℓ − 1) ) 1 c Linearize RG flow: = δ L ( ℓ ) = L ( ℓ ) − L ∗ δ L ( ℓ − 1) 2 / 3 0 c √ ( ) with eigenvalues λ 1 / 2 = 1 2 ± 10 and associated eigenvectors: 3 ( K ( ℓ ) ) ( 1 / 3 ) ( ) ( ) 3 − 3 + c 1 λ ℓ √ + c 2 λ ℓ √ → ≈ 1 2 L ( ℓ ) 1 / 9 10 − 2 10 + 2

  10. Critical point scaling Utilize linearized RG flow to analyze critical behavior: ◮ λ 1 > 1 → relevant direction; | λ 2 | < 1 → irrelevant direction ◮ Critical line : c 1 = 0, set L c = 0 (n.n. Ising model), ℓ = 0 ( K c ) ( 1 / 3 ) ( ) − 3 √ − 1 ≈ + c 2 → c 2 = √ 0 1 / 9 10 + 2 9( 10+2) → K c ≈ 0 . 3979; mean-field: K c = 0 . 25; exact: K c = 0 . 4406 ◮ Relevant eigenvalue determines critical exponent : 2 → 0, δ K ( ℓ ) ≈ e ℓ ln λ 1 ( K − K c ) ℓ ≫ 1: λ ℓ correlations : ξ ( ℓ ) = 2 − ℓ/ 2 ξ → ξ = ξ ( ℓ ) � � � δ K ( ℓ ) � ln 2 / 2 ln λ 1 K − K c ln 2 ξ ( ℓ ) ≈ a → ξ ( T ) ∝ | T − T c | − ν , ν = ≈ 0 . 6385 √ 2 ln 2+ 10 3 compare mean-field theory: ν = 1 2 ; exact (L. Onsager): ν = 1 Real-space renormalization group approach: ◮ difficult to improve systematically, no small parameter ◮ successful applications to critical disordered systems

  11. General mean-field theory: Landau expansion Expand free energy (density) in terms of order parameter (scalar field) ϕ near a continuous (second-order) phase transition at T c : f ( ϕ ) = r 2 ϕ 2 + u 4! ϕ 4 + . . . − h ϕ r > 0 f r = 0 r = a ( T − T c ), u > 0; conjugate field h breaks Z (2) symmetry ϕ → − ϕ r < 0 f ′ ( ϕ ) = 0 → equation of state : φ φ φ 0 - + h ( T , ϕ ) = r ( T ) ϕ + u 6 ϕ 3 φ 2 ϕ 2 > 0 Stability: f ′′ ( ϕ ) = r + u h > 0 ◮ Critical isotherm at T = T c : 0 T T c h ( T c , ϕ ) = u 6 ϕ 3 h < 0 ◮ Spontaneous order parameter for r < 0: ϕ ± = ± (6 | r | / u ) 1 / 2

  12. Thermodynamic singularities at critical point ◮ Isothermal order parameter susceptibility : ( ∂ h ) { 1 / r 1 = r + u 2 ϕ 2 → χ T r > 0 V χ − 1 T = V = 1 / 2 | r | 1 r < 0 ∂ϕ T → divergence at T c , amplitude ratio 2 χ T C h=0 0 T c 0 T c T T ◮ Free energy and specific heat vanish for T ≥ T c ; for T < T c : ( ∂ 2 f ) ± = − 3 r 2 = VT 3 a 2 f ( ϕ ± ) = r 4 ϕ 2 2 u , C h =0 = − VT ∂ T 2 u h =0 → discontinuity at T c

  13. Scaling hypothesis for free energy Postulate: (sing.) free energy generalized homogeneous function : ( h ) , τ = T − T c f sing ( τ, h ) = | τ | 2 − α ˆ f ± | τ | ∆ T c two-parameter scaling, with scaling functions ˆ f ± , ˆ f ± (0) = const . Landau theory: critical exponents α = 0, ∆ = 3 2 ◮ Specific heat : ( ∂ 2 f sing ) C h =0 = − VT = C ± | τ | − α T 2 ∂τ 2 c h =0 ◮ Equation of state : ( ∂ f sing ) ( h ) = −| τ | 2 − α − ∆ ˆ f ′ ϕ ( τ, h ) = − ± | τ | ∆ ∂ h τ ◮ Coexistence line h = 0, τ < 0: ϕ ( τ, 0) = −| τ | 2 − α − ∆ ˆ − (0) ∝ | τ | β , β = 2 − α − ∆ f ′

  14. Scaling relations ◮ Critical isotherm : τ dependence in ˆ f ′ ± must cancel prefactor, as x → ∞ : ˆ f ′ ± ( x ) ∝ x (2 − α − ∆) / ∆ → ϕ (0 , h ) ∝ h (2 − α − ∆) / ∆ = h 1 /δ , δ = ∆ β ◮ Isothermal susceptibility : ( ∂ϕ ) χ τ = χ ± | τ | − γ , γ = α + 2(∆ − 1) V = ∂ h τ, h =0 Eliminate ∆ → scaling relations : ∆ = β δ , α + β (1 + δ ) = 2 = α + 2 β + γ , γ = β ( δ − 1) → only two independent (static) critical exponents Mean-field: α = 0, β = 1 2 , γ = 1, δ = 3, ∆ = 3 2 (dim. analysis) Experimental exponent values different, but still universal : depend only on symmetry, dimension . . . , not microscopic details

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend