field of values error estimates for evaluating functions
play

Field of values error estimates for evaluating functions of matrices - PowerPoint PPT Presentation

Field of values error estimates for evaluating functions of matrices via the Arnoldi method Bernhard Beckermann http://math.univ-lille1.fr/ bbecker Laboratoire Paul Painlev e UMR 8524 ( equipe ANO-EDP) UFR Math ematiques,


  1. Field of values error estimates for evaluating functions of matrices via the Arnoldi method Bernhard Beckermann http://math.univ-lille1.fr/ ∼ bbecker Laboratoire Paul Painlev´ e UMR 8524 (´ equipe ANO-EDP) UFR Math´ ematiques, Universit´ e de Lille 1 Conference Harrachov 2007 Joint work with Lothar Reichel, Kent State University Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 1

  2. Outline • the problem: approaching g ( A ) b via Arnoldi’s method • here: error estimates in terms of field of values W ( A ) = { y ∗ Ay : � y � = 1 } • link with best polynomial approximation of g on W ( A ) ? • • • Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 2

  3. Outline • the problem: approaching g ( A ) b via Arnoldi’s method • here: error estimates in terms of field of values W ( A ) = { y ∗ Ay : � y � = 1 } • link with best polynomial approximation of g on W ( A ) ? • Explicit bounds for exp( A ) b • Explicit bounds for A κ b , − 1 < κ < 0 , and other Markov functions • Explicit bounds for general powers and log( A ) b Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 2

  4. The problem How to approximately compute g ( A ) b , where A ∈ C d large, sparse, non-symmetric...? � b � = 1 , Arnoldi decomposition H m ∈ C m upper Hessenberg, AV m = V m H m + f m e ∗ m , and V m ∈ C d × n , V ∗ m V m = I m , V m e 1 = b , V ∗ m f m = 0 . We have for each polynomial p of degree < m : p ( A ) b = p ( A ) V m e 1 = V m p ( H m ) e 1 . Approximation via Arnoldi: • compute Arnoldi decomposition V m , H m for ”small” m • compute exactly g ( H m ) • approach g ( A ) b by V m g ( H m ) e 1 . Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 3

  5. Error estimate with Crouzeix For each polynomial p of degree < m � g ( A ) b − V m g ( H m ) e 1 � = � ( g − p )( A ) b − V m ( g − p )( H m ) e 1 � ≤ � ( g − p )( A ) � + � ( g − p )( H m ) � . THEOREM 1: Let E ⊂ C be some convex and compact set containing the field of values W ( A ) = { y ∗ Ay : y ∈ C d , � y � = 1 } , and let g be analytic on E , then � g ( A ) b − V m g ( H m ) e 1 � ≤ 24 η m ( g, E ) , η m ( g, E ) := deg p<m � g − p � L ∞ ( E ) . min Proof: Michel Crouzeix in 2006 showed that � f ( B ) � ≤ 12 � f � L ∞ ( W ( B )) . Also, H m = V ∗ m AV m = ⇒ W ( H m ) ⊂ E . � Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 4

  6. Riemann maps and Faber maps Let E convex and compact as before, D the closed unit disc, then there exists unique conformal maps φ : E c �→ D c with φ ( ∞ ) = ∞ , φ ′ ( ∞ ) > 0 , ψ := φ − 1 . R = { z ∈ E c : | φ ( z ) | > R } . Level sets for R > 1 defined by complement: E c Bernstein Theorem: If g analytic in E R then R − m η m ( g, E ) = deg p<m � g − p � L ∞ ( E ) ≤ 2 min 1 − R − 1 � g � L ∞ ( E R ) . Faber map F : A ( D ) �→ A ( E ) defined by � ψ ′ ( w ) 1 F ( G )( z ) = ψ ( w ) − z G ( w ) dw. 2 πi | w | =1 1 g = F ( G ) = ⇒ �F − 1 � η m ( G, D ) ≤ η m ( g, E ) ≤ 2 η m ( G, D ) . Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 5

  7. Faber polynomials and Faber series Faber polynomial: F n ( z ) = F ( w n )( z ) polynomial of degree n , F n polynomial part of φ n , ovari ’67 ( E convex): � F n − φ n � L ∞ ( E ) ≤ 1 . Pommerenke and K˝ Examples: E = a + D R : F n ( z ) = ( z − a R ) n . E = [ − 1 , 1] : F n ( z ) = 2 T n ( z ) Chebyshev polynomials of first type. Faber series: For g ∈ A ( E ) , j ≥ 0 � ∞ � 1 g ( ψ ( w )) g j w j , g j = dw = ⇒ g = F ( G ) , G ( w ) = w j +1 2 πi | w | =1 j =0 where the last sum, and g ( z ) = � ∞ j =0 g j F j ( z ) , are absolutely convergent in D , and E , respectively. Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 6

  8. THEOREM 2: Let E ⊂ C be some convex and compact set containing the field of values W ( A ) and let g = F ( G ) be analytic on E , then � g ( A ) b − V m g ( H m ) e 1 � ≤ 4 η m ( G, D ) . Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 7

  9. Idea of proof of Theorem 2 Inspired from Crouzeix, Delyon, Badea, BB 02-07, in particular the CRAS ’05 of BB: � F n ( A ) � ≤ 2 . It is sufficient to show � h ( A ) � ≤ 2 � H � L ∞ ( D ) , h = F ( H ) + H (0) . Here W ( A ) ⊂ Int ( E ) for simplicity. We have  �  F m ( A ) if m = 0 , 1 , 2 , ... , 1 F ( w m )( A ) = w m ψ ′ ( w )( ψ ( w ) − A ) − 1 dw =  2 πi 0 if m = − 1 , − 2 , ... . | w | =1 Hence   �   � wψ ′ ( w )( ψ ( w ) − A ) − 1 � � wψ ′ ( w )( ψ ( w ) − A ) − 1 � ∗ h ( A ) = 1 dw   H ( w ) + iw .     2 π � �� � | w | =1 positive definite Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 8

  10. How to exploit Theorem 2? ∞ ∞ � � g j w j . � g ( A ) b − V m g ( H m ) e 1 � ≤ 4 η m ( G, D ) , g ( z ) = g j F j ( z ) , G ( w ) = j =0 j =0 LEMMA 3:   | g m |   ∞ � ≤ η m ( G, D ) ≤ | g m + j | . | g m + g m +( m +1) + g m +2( m +1) + ... |    j =0 | g m − g m +( m +1) + g m +2( m +1) ∓ ... | Knitznerman ’91 gave a similar upper bound with additional powers of m + j Hochbruck & Lubich ’97 gave a more complicated bound, weaker up to factor 0 . 75 . Idea of proof: Upper bound partial sum. First lower bound 1 G ( w ) 1 G ( w ) − q ( w ) � � deg q < m : g m = w m +1 dw = dw. 2 πi 2 πi w m +1 | w | =1 | w | =1 For second lower bound compute η m ( G, { exp( 2 πij m +1 ) : j = 0 , 1 , ..., m } ) = modulus of leading coefficient of interpolating polynomial at these roots of unity. � Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 9

  11. Application 1: the exponential function Consider E symmetric with respect to real axis (e.g., A ∈ R d × d ), and g ( z ) = exp( τz ) , τ > 0 . We write ψ ( w ) = cap ( E ) w + c + O (1 / [ w | ) | w |→∞ . LEMMA 4: the case of ”large” j : there exist explicit ”modest” constants K, K 1 , K 2 > 0 such that for j ≥ τ cap ( E ) � � � f j − e τc [ τ cap ( E )] j [ τ cap ( E )] j [ τ cap ( E )] j [ τ cap ( E )] j � ≤ K � � , K 1 ≤ η j ( G, D ) ≤ K 2 . √ j j ! j ! j ! j ! Idea of proof: convexity plus ”elementary” properties of ψ allows to show that | ψ ( Re it ) − ψ ( R ) − R ( e it − 1) | ≤ | t | = ⇒ cap ( E ) R | e τ ( ψ ( Re it ) − ψ ( R )) − e τ cap ( E ) R ( e it − 1) | ≤ τ cap ( E ) | t | = ⇒ R � π e τ cap ( E )( u − R ) 1 � ≤ 1 τ cap ( E ) | t | dt R j = π τ cap ( E ) � � � � e − τψ ( R ) f j − du � � u j +1 R j +1 2 πi π R 2 | u | = R 0 j now take R = τ cap ( E ) ≥ 1 . � Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 10

  12. Can we do something for j < τ cap ( E ) ? Sometimes one may exploit the trivial bound e τψ ( R ) | f j | ≤ min R j R ≥ 1 with minimum attained at R = 1 if j < τψ ′ (1) (notice that ψ ′ (1) = 0 if E has an outer angle > π at ψ (1) ), and else at � R being unique solution of τRψ ′ ( R ) = j . Example (Hochbruck and Lubich): let E = [ − 4 ρ, 0] then ψ ( w ) = cap ( E )( w + 1 Rψ ′ ( R ) = cap ( E )( R − 1 w − 2) , R ) , and thus for all 0 ≤ j ≤ τ cap ( E ) � � � � j 2 m 2 | f m | ≤ exp − , η j ( G, D ) ≤ K 3 exp − . 7 τ cap ( E ) 7 τ cap ( E ) Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 11

  13. Application 2: powers/Markov functions Consider E ⊃ W ( A ) symmetric with respect to real axis (e.g., A ∈ R d × d ), and � β dµ ( t ) g ( z ) = z − t , α < β < γ = min { Re( z ) : z ∈ E } , µ ≥ 0 . α � 0 | t | κ Example: z κ = sin( π | κ | ) z − t dt for κ ∈ ( − 1 , 0) . −∞ π � β α φ ( t ) − j − 1 φ ′ ( t ) dµ ( t ) with sign ( − 1) j . Here Faber coefficients g j = − Improved: � ∞ j =0 | g m + j ( m +1) | ≤ η m ( G, D ) ≤ � ∞ j =0 | g m +2 j | sharp up to m +1 2 . COROLLARY 5: For Markov function � β | φ ′ ( t ) | | φ ( γ ) | m = 4 � g � L ∞ ( E ) | φ ( t ) | m − 1 ≤ 4 | g ( γ ) | dµ ( t ) � g ( A ) b − V m g ( H m ) e 1 � ≤ 4 | φ ( γ ) | m . | φ ( t ) | 2 − 1 α Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 12

  14. A special case of Markov: FOM Consider x m := V m H − 1 m e 1 ∈ span ( V m ) = span ( b, Ab, ..., A m − 1 b ) then b − ( AV m ) H − 1 m e 1 = b − ( V m H m + f m e ∗ m ) H − 1 b − Ax m = m e 1 − f m e ∗ m H − 1 m e 1 ⊥ span ( V m ) = span ( b, Ab, ..., A m − 1 b ) = i.e., x m is FOM iterate. From previous slide for 0 �∈ E ⊃ W ( A ) symmetric with respect to real axis with g ( x ) = 1 /x � A − 1 b − x m � ≤ 4 | φ (0) | − m dist (0 , E ) . Closely related known estimate � A − 1 b − x m � � A � deg q<m � A − 1 b − q m − 1 ( A ) b � . ≤ inf � A − 1 b � dist (0 , E ) Bernhard Beckermann, Univ. Lille 1 back Harrachov 2007, page 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend