fault tolerant quantum computing with color codes
play

Fault-tolerant quantum computing with color codes Andrew J. Landahl - PowerPoint PPT Presentation

' !" ' !" !* !* !! !! % $ !# ) !# ( !& !& !+' *+!" !"#$#%&'()*+,&-.&"#/-0#.$)(&'#%-1#.&& "#$% & !% !$ !% !$ &+!! #+!* % $ % $


  1. ' !" ' !" !* !* !! !! % $ !# ) !# ( !& !& !+' *+!" !"#$#%&'()*+,&-.&"#/-0#.$)(&'#%-1#.&& "#$% & !% !$ !% !$ &+!! #+!* % $ % $ 2-$"&+3+.&)4#5.$&#6&2"-$+&%')*+& ) ( ) ( %+!& !! $+!# ' !" ' !" &7+$2++.&'"#$#%&).,&"+),+/& )+!% (+!$ "#$% & !* !* !! !! % $ !# ) ( !# !& !& !% !% !$ !$ Fault-tolerant quantum computing with color codes Andrew J. Landahl with Jonas T. Anderson and Patrick R. Rice. arXiv:1108.5738 89:;:88& This work was supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. <=>88?&@+*#.,&A.$+/.)1#.)(&>#.6+/+.*+&#.&<5).$54&=//#/&>#//+*1#.&

  2.                   Photos placed in horizontal posi1on             with even amount of white space            between photos and header                     Fault-tolerant quantum computing with color codes Andrew J. Landahl with Jonas T. Anderson and Patrick R. Rice. arXiv:1108.5738 12/8/11 This work was supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. QEC11: Second Interna1onal Conference on Quantum Error Correc1on

  3. Color codes The 2D topological The three semiregular 2D topological color codes subsystem color code [Bombin & Mar1n‐Delgado, PRL 97 , 180501 (2006)] [Bombin, PRA 80 , 032301 (2010)] 4.8.8 6.6.6 4.6.12 3.4.6.4 S is transversal S is transversal Fewest qubits/distance Checks: X f , Z f Two‐body checks suffice Planar color codes: 3 m corners These codes are naturally suited to 2D quantum technologies in which long‐distance quantum transport is imprac1cal. The 2D surface code has many promising features for fault‐tolerant quantum compu1ng, including a high accuracy threshold and no need for syndrome ancilla dis4lla4on. How do 2D color codes compare? QEC11: Second Interna1onal Conference on Quantum Error Correc1on 3

  4. Control & noise models Control model: (Faulty) gate basis: { I, X, Z, H, S, S † , CNOT , M Z , M X , | 0 � , | + � , | π/ 4 �} • Standard assumpDons: Parallel opera1on, refreshable ancilla, fast classical computa1on, equal‐1me gates. • Locality assumpDons: 2D layout, local quantum processing. • BP channel: Bit‐flip channel B(p) followed by phase‐flip channel Φ(p). DP channel: Applies each two‐qubit (“double Pauli”) product with probability p/16. Noise model: Standard assumpDons: No leakage, reliable classical computa1on. • 1. Circuit‐based noise model Each prepara1on and one‐qubit gate followed by BP ( p ). • Each CNOT gate followed by DP ( p ). • Each measurement preceded by BP ( p ) and result flipped with probability p . • 2. Phenomenological noise model Same, except each syndrome‐bit extrac1on circuit modeled “phenomenologically” as a measurement that • fails with probability p ; ignores noise propaga1on between data and ancilla. Gates only appear in encoded computa1on. 3. Code‐capacity noise model Same as phenomenological model, except syndrome measurements are perfect. • QEC11: Second Interna1onal Conference on Quantum Error Correc1on 4

  5. Decoders & thresholds OpDmal decoder: Returns recovery most likely to succeed given the syndrome. MLE decoder: Returns most likely error that occurred given the syndrome. 7.8% [A] 0.9% [B] [A: Sarvepalli & Raussendorf, arXiv:1111.0831] [B: Fowler, Whiteside, and Hollenberg, arXiv:1110.5133] [See our paper 1108.5738 for other references.] QEC11: Second Interna1onal Conference on Quantum Error Correc1on 5

  6. Syndrome extraction XZ sequenDal schedule XZ interleaved schedule         | 0 � ���� ���� ���� ���� ���� ���� ���� ���� �� � �       M Z •            •    •          •            � �� �     | + � • M X • • •     ���� ����    ���� ����        ���� ���� ���� ����       Example of error propagaDon                                         • X error on X ‐check bit (red circle) between 1me           steps 5 and 6.         • Propagates to 3 data errors; detected correctly by 3 Z ‐check bits (yellow)           QEC11: Second Interna1onal Conference on Quantum Error Correc1on 6

  7. Decoding Code‐capacity MLE decoder: (Works for all CSS codes.) OpDmizaDon problem Integer program over GF(2) Integer program over the reals min 1 T x z := s + 2 t 1 + 4 t 2 + 8 t 3 � min c T y min x v y := ( x T , t T 1 , t T 2 , t T 3 ) T v sto A y = z sto H x = s mod 2 � x v = s f ∀ f sto x ∈ B n y ∈ B n 1 T , 0 T , 0 T , 0 T � T � c := v ∈ f A := ( H | − 2 I | − 4 I | − 8 I ) x v ∈ B := { 0 , 1 } Phenomenological MLE decoder: (Works for all CSS codes.) Integer program over the reals ∆z := ∆s + 2 t 1 + 4 t 2 + 8 t 3 min c T y y := ( x T data , x T synd , t T 1 , t T 2 , t T 3 ) T sto A y = ∆ z y ∈ B n 1 T , 1 T , 0 T , 0 T , 0 T � T � c :=   H I H I I   Measurement Data A := − 2 I − 4 I − 8 I  .   ... ...   error error  H I I QEC11: Second Interna1onal Conference on Quantum Error Correc1on 7

  8. Code-capacity threshold Exact curves found up to d = 7. Monte‐Carlo esDmate for d = 9. � � p (est) 1 − p (est) � p | E | (1 − p ) n −| E | , p fail = = N fail p (est) fail fail fail ) (est) = ( σ 2 fail failing patterns E N N 0.45 d=3 d=5 (a) Threshold by scaling Ansatz fit, d=7 0.4 0.165 d=9 not curve crossing esDmate. 0.16 0.35 [Wang, Harrington, & Preskill, 0.155 Ann. Phys. 303 , 31 (2003)] 0.15 0.3 Theory: • 0.145 P Failure 0.14 0.25 ξ ∼ | p − p c | − ν 0 0.135 p fail = ( p − p c ) d 1 /ν 0 0.2 0.13 (b) 0.125 Fit: • 0.15 0.101 0.103 0.105 0.107 0.109 0.111 0.1422 0.142 p fail = A + B ( p − p c ) d 1 /ν 0 0.1418 0.1 0.1416 0.1414 0.05 0.1412 p th = 10 . 56(1)% 0.141 0.1054 0.1055 0.1056 0.1057 0 0 0.05 0.1 0.15 0.2 N.B. Finite size effects may ma:er. P Error QEC11: Second Interna1onal Conference on Quantum Error Correc1on 8

  9. Phenomenological threshold 0.2 d=5 d=7 d=9 Algorithm 1 : p fail ( p ) by Monte Carlo 4 ( d + 1) 2 − 1. 1: n faces ← 1 0.15 2: for i = 1 to N do P Failure // Generate data and syndrome errors for d time slices. 3: 0.1 for t = 1 to d do 4: for j = 1 to n do 5: E [ t, j ] ← 1 with probability p . // Data errors. 6: end for 7: 0.05 for j = n + 1 to n + 1 + n faces do 8: E [ t, j ] ← 1 with probability p . // Synd. errors. 9: end for 10: 0 end for 0.02 0.025 0.03 0.035 0.04 11: P Error E min ← Decode(Syndrome( E )). // 3D error volume. 12: 0.2 E ′ ← L d=5 t E [ t ] ⊕ E min [ t ]. // 2D error plane. 13: d=7 d=9 E ′ min ← Decode(Syndrome( E ′ )). // Ideal decoding . 0.18 14: i E ′ [ i ] ⊕ E ′ if ( L min [ i ] = 1) then 15: 0.16 N fail ← N fail + 1. 16: end if 17: 0.14 P Failure 18: end for 0.12 19: return p (est) = N fail /N . fail 0.1 0.08 p th = 3 . 05(4)% 0.06 0.04 0.024 0.026 0.028 0.03 0.032 0.034 0.036 P Error QEC11: Second Interna1onal Conference on Quantum Error Correc1on 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend