faster is slower effect
play

Faster is Slower Effect B. Maury DMA, Ecole Normale Suprieure & - PowerPoint PPT Presentation

Faster is Slower Effect B. Maury DMA, Ecole Normale Suprieure & Laboratoire de Mathmatiques dOrsay With F. Al Reda, S. Faure, A. Roudneff-Chupin, F. Santambrogio, J. Venel Marseille, June 5 th 2019 Experimental evidence (and


  1. Faster is Slower Effect B. Maury DMA, Ecole Normale Supérieure & Laboratoire de Mathématiques d’Orsay With F. Al Reda, S. Faure, A. Roudneff-Chupin, F. Santambrogio, J. Venel Marseille, June 5 th 2019

  2. Experimental evidence (and counter-evidence…) Garcimartin et al. 14’ Zuriguel et al. 16’ Nicolas et al. 16’ Parisi et al. 15’ Observed phenomena : Capacity Drop and Faster is Slower effects

  3. Experimental evidence (and counter-evidence…) Complementary CDF for time lapses

  4. Related phenomenon : role of an obstacle

  5. Faster is Slower Effect in other contexts (or: the best is the enemy of the good ) For general systems : counter-effective increase of the forcing term (possibly above a certain threshold) Examples Expiratory Flow Limitation Hurtling Droplet Gouttes, bulles, perles et ondes David Quéré, Françoise Brochard-Wyart et Pierre-Gilles de Gennes

  6. <latexit sha1_base64="GozASgAuvlANbHDWELrbdkYp4=">AC6HicjVHLSsNAFD2Nr/qunQzWMS6sKRV0I0gunFZxVahVknGqcamSZhMhFL6Ae7ciVt/wK1+ifgH+hfeGSOoRXRCknPvefM3Llu5Huxsu2XjDUwODQ8kh0dG5+YnJrOzczW4jCRXFR56IfyHVi4XuBqCpP+eIoksJpu74dFs7On94JWTshcGB6kSi0XbOA6/pcUcRdZrL7y2xTXbclA5n3f1CZmtsArbXyLUM/FJuUdVdtE2i/WDUgrySFclzD3jGcIwZGgDYEAirAPBzE9dZRgIyKugS5xkpBn8gI9jJE2oSpBFQ6xLfqeU1RP2YBi7RkbNadfHolKRkWSRNSnSsd2Mmnxhnzf7m3TWe+mwd+rupV5tYhQti/9J9Vv5Xp3tRaGLD9OBRT5FhdHc8dUnMreiTsy9dKXKIiNP4jPKSMDfKz3tmRhOb3vXdOib/aio1q2Oe1iZ406ekAZd+jrMf1MrF0mqxvLeW39pOR53FPBZQoHmuYwu7qKBK3td4wCOerEvrxrq17j5KrUyqmcO3Zd2/A+Wzmfg=</latexit> <latexit sha1_base64="HYqHB/0Iomi+73L5p0oC2Do5No=">ACzXicjVHLSsNAFD2Nr1pfVZdugkWom5pWQTdC0Y07U7EPrEWSdFpD8yKZCKXq1h9wq78l/oH+hXfGKahFdEKSM+fec2buvXbkuQk3jNeMNjU9MzuXnc8tLC4tr+RX1xpJmMYOqzuhF8Yt20qY5waszl3usVYUM8u3Pda0B8ci3rxhceKGwTkfRqzjW/3A7bmOxYm6qOmHurlzVjS3r/IFo2TIpU+CsgIFqGWG+RdcosQDlL4YAjACXuwkNDTRhkGIuI6GBEXE3JlnOEOdKmlMUowyJ2QN8+7dqKDWgvPBOpdugUj96YlDq2SBNSXkxYnKbLeCqdBfub90h6irsN6W8rL59Yjmti/9KNM/+rE7Vw9HAga3CpkgyojpHuaSyK+Lm+peqODlExAncpXhM2JHKcZ91qUlk7aK3loy/yUzBir2jclO8i1vSgMs/xzkJGpVSebdUqe0Vqkdq1FlsYBNFmuc+qjiBiTp5B3jE561Uy3VbrX7z1QtozTr+La0hw8F8pGj</latexit> <latexit sha1_base64="DhIcz8+fYoH86Lgiq6VQp+IqI=">ACznicjVHLSsNAFD2Nr1pfVZdugkV0VZMq6LoxmUs9gFtkWQ6rcG8TCaFUopbf8Ctfpb4B/oX3hlTUIvohCRnzj3nztx7nchzE2EYrzltbn5hcSm/XFhZXVvfKG5uNZIwjRmvs9AL45ZjJ9xzA14XrvB4K4q57Tsebzq35zLeHPI4cPgSowi3vXtQeD2XWYLotq1fb3j8Tu9dmhdF0tG2VBLnwVmBkrIlhUWX9BDyEYUvjgCAIe7CR0NOGCQMRcV2MiYsJuSrOMUGBvCmpOClsYm/pO6BdO2MD2suciXIzOsWjNyanj3yhKSLCcvTdBVPVWbJ/pZ7rHLKu43o72S5fGIFboj9yzdV/tcnaxHo41TV4FJNkWJkdSzLkquyJvrX6oSlCEiTuIexWPCTDmnfdaVJ1G1y97aKv6mlJKVe5ZpU7zLW9KAzZ/jnAWNStk8Klcuj0vVs2zUexgFwc0zxNUcQELdXxRzhWbO0oTbR7j+lWi7zbOPb0h4+AFhLkpU=</latexit> <latexit sha1_base64="do1yrEGmhxHbCPjHMHTGNX9SeoI=">ACznicjVHLSsNAFD2Nr1pfVZdugkV0VZMq6LoxmUs9gFtkWQ6rcG8TCaFUopbf8Ctfpb4B/oX3hlTUIvohCRnzj3nztx7nchzE2EYrzltbn5hcSm/XFhZXVvfKG5uNZIwjRmvs9AL45ZjJ9xzA14XrvB4K4q57Tsebzq35zLeHPI4cPgSowi3vXtQeD2XWYLotq1fb0z4Hd67dC6LpaMsqGWPgvMDJSQLSsvqCDHkIwpPDBEUAQ9mAjoacNEwYi4roYExcTclWcY4ICeVNScVLYxN7Sd0C7dsYGtJc5E+VmdIpHb0xOHXvkCUkXE5an6SqeqsyS/S3WOWUdxvR38ly+cQK3BD7l2+q/K9P1iLQx6mqwaWaIsXI6liWJVdkTfXv1QlKENEnMQ9iseEmXJO+6wrT6Jql721VfxNKSUr9yzTpniXt6QBmz/HOQsalbJ5VK5cHpeqZ9mo89jBLg5onieo4gIW6qrj3jCs2ZpQ2i3X9KtVzm2ca3pT18AExNkpA=</latexit> Faster is Slower Effect in other contexts (or: the best is the enemy of the good ) In the context of the respiratory system : Expiratory Flow Limitation (EFL) Poiseuille’s Law : Flux Q = P/R ( P ) Maximal flux Q 0 = R ( P ) − PR 0 ( P ) R ( P ) 2 R 0 ≤ R/P R 0 ≥ R/P

  7. Faster is Slower Effect in other contexts (or: the best is the enemy of the good )

  8. Faster is Slower Effect in crowd motion Helbing’s S ocial Force Model : du i dt = m i � � f w τ ( U i − u i ) + f ij + m i ik , j ̸ = i k Reproduces the FiS effect with an additional friction term Cellular Automata (Schadschneider, Seyfried, Klüpfel … ) Von Neumann Again, friction makes it work: in case of a conflict, there is a non-zero probability that no competitor moves

  9. Faster is Slower Effect in crowd motion N.B. all computations performed with Python Package c romosim pypi.org/project/cromosim/ (S. Faure & B.M.) Mathematical aspects described in Crowds in Equations, B.M. & S. Faure, World Scientific

  10. Faster is Slower Effect Alternative standpoint, an underlying bizarre Laplace operator

  11. Macroscopic model (with A. Roudneff Chupin & F. Santambrogio) ty U = U ( x ) Spontaneous velocity Feasible densities K = { ρ ∈ P ( Ω ) , 0 ≤ ρ ≤ 1 a.e. } � ∂ρ � ∂ t + ∇ · ( ρ u ) = 0 � � � u = P C ρ U, � re ρ = 1 Cone of feasible velocities : nonnegative divergence wherever The projection can be formulated as a unilateral Darcy problem � u + ∇ p = � U � � 0 −∇ · u ≤ � � � 0 p ≥ � � � � = 0 , u · ∇ p � ω

  12. Macroscopic setting : mathematical issues The problem takes the form of a conservation law ∂ρ ∂ t + ∇ · F ( ρ ) = 0 , where F ( ρ ) = ρ P C ρ ( U ) is non-local, non-smooth in both ways : the velocity field u is simply L 2 , and its dependence upon ρ is highly non-smooth. − → Standard theory is not applicable Idea : extend Moreau’s catching up algorithm to measures ρ k +1 = ( id + τ U ) # ρ k transport (prediction), � ˜ � � ρ k +1 = P K � ρ k +1 � � (in the Wasserstein sense) ˜ projection (correction), � Th. (with A. Roudneff-Chupin & F. Santanbrogio) : the evolution problems admits a solution

  13. Evacuation of a room = u P C ρ U . � � u + ∇ p = U � p = 0 � 0 −∇ · u ≤ � � � 0 p ≥ � � � � − ∆ p = −∇ · U > 0 , = 0 , u · ∇ p � ω p = 0 At the exit : u · n = U · n − ∂ p ∂ n ≥ U · n People exit faster as they would if they were alone : no capacity drop, no clogging.

  14. x Faster is Slower effect ? p = 0 speed correction factor β = β ( x ) − ∆ p β = −∇ · β U > p = 0 ∂ p β Z Z Z J ( β ) = u β · n = β U β · n − ∂ n Γ out Γ out Γ out � − ∆ q = 0 in Ω , The gradient of J is is U · ∇ q � � q = 1 on Γ out � � where q solves the adjoint problem : q = 0 on Γ up � � � ∂ q � ∂ n = 0 on Γ w � for « reasonable » choices of U : � U · r q � 0 Faster is Faster effect …

  15. Microscopic level : A granular (purely selfish) model (with J. Venel) at q 1 , q 2 , . . ., q N ∈ R 2 . N individuals, centered at K = { q ∈ R 2 N , D ij ( q ) = | q j − q i | − 2 r ≥ 0 ∀ i ̸ = j } . Set of feasible configurations U = ( U 1 , . . . , U N ) Spontaneous velocities r r e ij − e ij q i D ij q j u = dq dt = P C q U , C q = { v , D ij ( q ) = 0 ⇒ e ij · ( v j − v i ) ≥ 0 }

  16. Individual dissatisfaction (distance to the exit) Gradient flow framework � Ψ ( q ) = D ( q i ) + I K ( q ) . Dissatisfaction functional i dq dt ∈ − ∂ Ψ ( q ) ∂ Ψ ( q ) = { v, Ψ ( q ) + v · h ≤ Ψ ( q + h ) ∀ h } Non overlapping constraint � 0 if q ∈ K � I K ( q ) = � + ∞ if q / ∈ K �

  17. Micro-macro similarities r r U = ( U 1 , . . . , U N ) . spontaneous velocities e ij − e ij x i D ij x j Constraint when i and j are in contact G ij · u ≥ 0 G ij = ∇ D ij ( x ) = (0 , . . . , 0 , − e ij , 0 , . . . , 0 , e ij , 0 , . . . , 0) ∈ R 2 N Macro Micro � � � � u + B ⋆ p = u − = U, p ij G ij U, � u + ∇ p = U � � � � � i ∼ j � � � 0 −∇ · u ≤ 0 , Bu ≤ � � � � � 0 − G ij · u ≤ ∀ i ∼ j, � � � 0 p ≥ � � � ≥ 0 , p � � � � p ≥ 0 , � � � � = 0 , � u · ∇ p � = 0 . p · Bu � � G ij · u > 0 = ⇒ p ij = 0 . � ω

  18. Remark : « Standard » laplacian on the primal network p j p i Macroscopic u ij = − c ij ( p j − p i ) Ohm / Poiseuille / Fick law u = � k r p X u ij = 0 r · u = 0 Kirchhoff law j ∼ i X c ij ( p i − p j ) = 0 Discrete harmonicity �r · k r p = 0 j ∼ i Maximum principle

  19. Discrete Poisson problem Discrete Continuous BB ? p = BU − ∆ p = −∇ · U > 0 , In 1d : .... ×  2 − 1 0 0  · · ⎛ 1 − 1 0 · · 0 ⎞   − 1 2 − 1 0   · ·   0 1 − 1 · · ·   0 − 1   BB ? = ⎜ ⎟ · · · B =     ⎜ ⎟ · · · · · 0   · · · · · ⎝ ⎠      2 − 1  · · · · 1 − 1 · ·     0 0 − 1 2 · · -1 In higher dimensions : a bit different -1 2 -1 2 -1 2 -1 -1 2 -1 2 -1

  20. Here : non-standard laplacian on the dual network Pressures defined at edges (i.e. contact points)

  21. Here : non-standard laplacian on the dual network Pressures defined at edges (i.e. contact points)

  22. j i k The matrix is not diagonally dominant in general + some extra diagonal terms are positive

  23. Consequence : no maximum principle BB ? p = BU > 0 p > 0 does not imply 4 -disk system, glued together + + - + +

  24. Faster is slower effect in the microscopic situation ? speed correction factors β = ( β i ) i - - + + BB ? p � = B ( β � U ) n i J ( β ) = − B ? p · n i The gradient of J is U � B ? q BB ? q = Bn i where q solves the adjoint problem : No reason for J to be positive: some individuals may accelerate the egress of the blue guy by reducing their speed

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend