fast harmonic mappings
play

Fast Harmonic Mappings EDEN FEDIDA HEFETZ BAR-ILAN UNIVERSITY, - PowerPoint PPT Presentation

Fast Harmonic Mappings EDEN FEDIDA HEFETZ BAR-ILAN UNIVERSITY, ISRAEL 1 Goal Find fast, locally injective harmonic mappings between shapes with low distortion. 1) Formulation of the optimization problem 2) Create custom-made solvers for the


  1. Fast Harmonic Mappings EDEN FEDIDA HEFETZ BAR-ILAN UNIVERSITY, ISRAEL 1

  2. Goal Find fast, locally injective harmonic mappings between shapes with low distortion. 1) Formulation of the optimization problem 2) Create custom-made solvers for the specific problem => Acceleration by orders of magnitude Performed on two types of harmonic mappings: 1) Planar shape deformation 2) Seamless parameterization 2

  3. Fast Planar Harmonic Deformations with Alternating Tangential Projections EDEN FEDIDA HEFETZ, EDWARD CHIEN, OFIR WEBER BAR-ILAN UNIVERSITY, ISRAEL 3

  4. The Mapping Problem ๐‘”: ๐›ป โ†’ โ„ 2 โ€ข Desirable properties: โ€ข Locally-injective โ€ข Bounded conformal distortion โ€ข Bounded isometric distortion โ€ข Real-time 4

  5. Previous Work โ€ข Cage based methods (barycentric coords): โ€ข Bounded distortion: [Hormann and Floater 2006] [Lipman 2012] [Joshi et al.2007] [Kovalsky at al. 2015] [Lipman et al. 2007] [Chen and Weber 2015] [Weber et al. 2011] [Levi and Weber 2016] [Weber et al. 2009] โ€ฆ โ€ฆ 5

  6. Notations โ€ข Planar mapping: โ€ข Distortion measures: ๐‘”: ฮฉ โ†’ โ„ 2 โ€ข Jacobian: โ€ข Singular values of ๐พ ๐‘” ๐พ ๐‘” = ๐‘ โˆ’๐‘ + ๐‘‘ ๐‘’ ๐‘ ๐‘ ๐‘’ โˆ’๐‘‘ Similarity Anti-similarity โ€ข Complex Wirtinger derivatives: 0 โ‰ค ๐œ ๐‘ โ‰ค ๐œ ๐‘ ๐‘” ๐‘จ = ๐‘ + ๐‘—๐‘ ๐œ ๐‘ = ๐‘” ๐‘จ + ๐‘” าง ๐‘จ ๐‘” ๐‘จ = ๐‘‘ + ๐‘—๐‘’ ๐œ ๐‘ = ๐‘” ๐‘จ โˆ’ ๐‘” าง ๐‘จ 6

  7. Bounded Distortion Harmonic Mappings โ€ข The BD space : โˆ€๐‘จ โˆˆ ๐›ป ๐œ ๐‘ โˆ’๐œ ๐‘ ๐‘” เดค ๐‘จ ๐‘™ ๐‘จ = ๐œ ๐‘ +๐œ ๐‘ = ๐‘จ โ‰ค ๐ท ๐‘™ conformal ๐‘” ๐œ ๐‘ z = ๐‘” ๐‘จ + ๐‘” าง ๐‘จ โ‰ค ๐ท ๐‘ ๐Š = ๐ง๐›๐ฒ ๐‰ ๐’ƒ , ๐Ÿ isometric ๐œ ๐‘ z = ๐‘” ๐‘จ โˆ’ ๐‘” าง ๐‘จ โ‰ฅ ๐ท ๐‘ ๐‰ ๐’„ โ€ข Non-convex space ๐‘ซ ๐’ƒ = ๐Ÿ‘. ๐Ÿ” ๐‘ซ ๐’ƒ = ๐Ÿ๐Ÿ Source โ€ข Harmonic mapping enforce bounds only on ๐œ–ฮฉ [Chen and Weber 2015] 7

  8. The โ„’ ๐œ‰ Space [Levi and Weber 2016] โ€ข Change of variables: ๐ƒ = ๐’ˆ ๐’œ BD โ„’ ๐œ‰ ๐’Ž = ๐’Ž๐’‘๐’‰ ๐’ˆ ๐’œ ๐’ˆ ๐’œ โ„’ ๐œ‰ BD ๐’ˆ ๐’œ = ๐’‡ ๐’Ž ๐’œ = ๐ƒ๐’‡ ๐’Ž ๐’ˆ เดค โ€ข BD homeomorphic to โ„’ ๐œ‰ 8

  9. The โ„’ ๐œ‰ Space โ€ข Near convex space โˆ€๐‘ฅ โˆˆ ๐œ–๐›ป ๐‘™ ๐‘ฅ = ๐œ‰(๐‘ฅ) โ‰ค ๐ท ๐‘™ ๐œ ๐‘ w = ๐‘“ ๐‘†๐‘“(๐‘š(๐‘ฅ)) (1 + ๐œ‰(๐‘ฅ) ) โ‰ค ๐ท ๐‘ ๐œ ๐‘ w = ๐‘“ ๐‘†๐‘“ ๐‘š ๐‘ฅ (1 โˆ’ ๐œ‰(๐‘ฅ) ) โ‰ฅ ๐ท ๐‘ Convex 9

  10. Discretization โ€ข Enforce distortion constraints on m densely sampled points n vertices โ€ข Use Cauchy complex barycentric coordinate : ๐‘œ ๐‘œ ๐‘ก ๐‘˜ , ๐‘ข ๐‘˜ โˆˆ โ„‚ ๐‘š ๐‘จ = เท ๐‘ก ๐‘˜ ๐ท ๐‘˜ ๐‘จ & ๐œ‰ ๐‘จ = เท ๐‘ข ๐‘˜ ๐ท ๐‘˜ ๐‘จ ๐‘˜=1 ๐‘˜=1 โ€ข Subspace of holomorphic functions โ€ข 4n-dimensional m sample points Affine 10

  11. Our problem Convex Affine 4m-dimensional 4n-dimensional โˆฉ convex subspace of โ„ 4๐‘› Harmonic mapping Bounded distortion 11

  12. Our problem โ€ข Input : ๐‘š and ๐œ‰ values from cage data โ€ข Find the closest point in the intersection of an affine space and a convex space A ๐‘ ๐‘— B 12

  13. Alternating Projections MAP ATP ๐ผ ๐‘— 13

  14. Alternating Projections MAP ATP [Von Neumann 1950] Proof of convergence [Bauschke and Borwein 1993] 14

  15. Large-Scale Bounded Distortion Mappings [Kovalsky et al. 2015] โ€ข Alternating Projections between an affine space and non-convex space โ€ข No convergence guarantees โ€ข Upon convergence, not necessarily locally injective โ€ข Only bounds the conformal distortion and not isometric 15

  16. Gathering Input Data โ€ข Extract ๐‘š and ๐œ‰ values from cage data โ€ข Linear transformations ๐‘“ ๐‘— โŸผ เท ๐‘“ ๐‘— that preserves the unit normal ๐’‡ ๐’‹โˆ’๐Ÿ เทŸ ๐’‡ ๐’‹โˆ’๐Ÿ ๐’‡ ๐’‹ ๐’‡ ๐’‹ เท 1 1 1 2 ๐’‡ ๐’‹+๐Ÿ เทŸ ๐’‡ ๐’‹+๐Ÿ 16

  17. Implementation โ€ข Local : โ€ข Project each sample point to the bounded distortion space โ€ข GPU kernel โ€ข Global : โ€ข Linear + fixed left hand side โ€ข GPU - Matrix-Vector products using cuBLAS 17

  18. Results 18

  19. Near-optimality of alternating projection methods source MOSEK ATP MAP 3 fps 35 fps 0.005 fps 19

  20. Near-optimality of alternating projection methods source MAP ATP MOSEK 15 fps 140 fps 0.2 fps 20

  21. Speedup ร— ๐Ÿ๐Ÿ ๐Ÿ’ ~170 ร— ๐Ÿ’ โˆ™ ๐Ÿ๐Ÿ ๐Ÿ’ ~30 21

  22. ๐ท ๐‘ = = 5 5 ๐ท ๐‘ = = 0.2 ๐Š ๐Š = ๐ง๐›๐ฒ ๐‰ ๐’ƒ , ๐Ÿ ๐‰ ๐’„ 22

  23. Source Cauchy Coords [Kovalsky et al. 2015] ATP 23

  24. Summary โ€ข Planar deformation โ€ข GPU accelerated โ€“ speedup of 3 ร— 10 3 โ€ข Guaranteed local injectivity and bounded distortion โ€ข General proof of convergence โ€ข Future Work: โ€ข Positional constraints โ€ข Extension to parametrization of surfaces 24

  25. A Subspace Method for Fast Locally Injective Harmonic Mapping EDEN FEDIDA HEFETZ, EDWARD CHIEN, OFIR WEBER BAR-ILAN UNIVERSITY, ISRAEL 25

  26. The Parametrization Problem โ€ข Given a 3-D triangular mesh S, find a map ๐‘” โˆถ ๐‘‡ โ†’ ฮฉ such that ฮฉ โŠ‚ ๐‘† 2 โ€ข Desirable properties: โ€ข Locally injectivity โ€ข Low distortion โ€ข Fast computation 26

  27. Motivation โ€ข Texture mapping โ€ข Mesh correspondences โ€ข Remeshing 27/36

  28. Credit: Hans-Christian Ebke Quad Remeshing Example 28

  29. Previous Work โ€ข Linear methods โ€ข Nonconvex energy-based methods LSCM [Lรฉvy et al. โ€˜ 02] CM [Schtengel et al.] Killing [Claici et al.] Angle-Based [Zayer et al. โ€˜ 07] SLIM [Rabinovich et al.] Conformal Flattening [Ben-Chen et al. โ€˜ 08] AQP [Kovalsky et al.] โ€ฆ โ€ฆ We aim for the speed of a linear method and the robustness of a nonconvex method 29

  30. Tutte โ€™ s embedding โ€ข Discrete harmonic function Convex combination map Global bijection Convex boundary 30

  31. Global Parametrization Mesh cut to a disk along a seam graph ๐ป ๐‘ก 1) 2) Resulting disk mapped to plane 3) Seam edge copies have isometric images ๐’˜ ๐’‹ ๐’„ ๐’‡ ๐’‹๐’Œ ๐’œ ๐’Œ ๐’„ ) ๐’ˆ(๐‘“ ๐‘—๐‘˜ ๐’˜ ๐’Œ ๐’œ ๐’‹ ๐’ƒ ) ๐’ˆ(๐’‡ ๐’‹๐’Œ ๐’ƒ ๐’œ ๐’Œ Seamless parametrization: The rotational part of the isometry is a rotation by some multiple of ๐œŒ/2 . 31

  32. HGP [Bright et al. โ€˜ 17] Linear system: ๐œŒ๐‘ ๐‘—๐‘˜ = ๐‘“ ๐‘— ๐‘ ๐‘ 2 ๐‘” ๐‘“ ๐‘—๐‘˜ 1 . ๐‘” ๐‘“ ๐‘—๐‘˜ , ๐‘“ ij โˆˆ ๐ป ๐‘ก 2. 3. 32

  33. HGP [Bright et al. โ€˜ 17] Linear system: ๐œŒ๐‘ ๐‘—๐‘˜ = ๐‘“ ๐‘— ๐‘ ๐‘ 2 ๐‘” ๐‘“ ๐‘—๐‘˜ 1 . ๐‘” ๐‘“ ๐‘—๐‘˜ , ๐‘“ ij โˆˆ ๐ป ๐‘ก 2. 3. 33

  34. HGP [Bright et al. โ€˜ 17] Linear system: ๐œŒ๐‘ ๐‘—๐‘˜ = ๐‘“ ๐‘— ๐‘ ๐‘ 2 ๐‘” ๐‘“ ๐‘—๐‘˜ 1 . ๐‘” ๐‘“ ๐‘—๐‘˜ , ๐‘“ ij โˆˆ ๐ป ๐‘ก 2. 3. 34

  35. HGP [Bright et al. โ€˜ 17] HGP linear system Locally injective map Boundary and cone triangles are well-behaved i > f าง i f z , ๐‘— โˆˆ ๐‘ˆ ๐‘‘๐‘ ๐‘จ [Lipman 2012] Frame field from [Bommes et al. 2009] 35

  36. Subspace construction Linear part of HGP: ๐‘ƒ(|๐ท|) Add interpolation constraints to complete the system dimension: 36

  37. Subspace construction 0 ๐ฟ๐‘จ = ๐‘‘ ๐‘—๐‘œ๐‘ข 1 โ‹ฏ 0 0 ๐ฟ โˆ’1 ๐‘‘ ๐‘š๐‘—๐‘œ ๐‘‘ ๐‘—๐‘œ๐‘ข = ๐‘จ , ๐‘‘ ๐‘š๐‘—๐‘œ = โ‹ฎ 1 โ‹ฎ 0 โ‹ฏ 1 ๐ถ ๐‘‘ z = ฯƒ ๐‘—=1 ๐‘‘ ๐‘—๐‘œ๐‘ข = ๐‘จ ๐‘ ๐‘— ๐‘‘ ๐‘—๐‘œ๐‘ข๐‘— ๐‘ 1 ๐‘ 2 โ‹ฏ ๐‘ ๐‘‘ For ๐‘ ๐‘— , extract a column of ๐ฟ โˆ’1 ! By HGP theorem, only need to extract entries near cones and boundaries! 37

  38. Subspace construction -1 โ€ข Only need ๐‘ƒ( ๐ท ร— ๐ท ) elements of ๐ฟ โˆ’1 โ€ข Use selective inverse from PARDISO [KLS13, VCKS17] โ€ข Detailed instructions for PARDISO use. => Linear subspace with dimension ๐‘ƒ( ๐ท ) Affine 38

  39. Boundary and cone triangles 1 , ๐‘— โˆˆ ๐‘ˆ ๐‘‘๐‘ (2) (2) 1 Convex 39

  40. Our problem Convex Affine Dimension: 2 ๐‘ˆ ๐ท๐ถ Dimension: ๐‘ƒ( ๐ท ) โˆฉ ๐ผ ๐‘— Harmonic mapping Locally injective 40

  41. Projected Newton โ€ข Symmetric Dirichlet energy is optimized โ€ข Nonconvex, project Hessians to the PSD cone โ€ข [Chen & Weber 2017] 41

  42. Results! โ€ข Comparable quality to HGP results โ€ข Fairly robust results: 66 of 77 successful on a benchmark โ€ข One order of magnitude faster than HGP; comparable to 1-2 linear solves (next slide) 42

  43. Timing Results 100,000.00 10,000.00 Runtime (s) 1,000.00 100.00 10.00 1.00 0.10 0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 # Triangles Subspace Method HGP [Chien et al. 2016] 43

  44. Algorithm Parts Timing 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 1 2 3 4 Series1 Series2 Series3 44

  45. Summary โ€ข Surface parametrization โ€ข Speedup by order of magnitude โ€ข Locally injective โ€ข Analysis of linear system from HGP โ€ข Future Work: โ€ข Higher genus โ€ข Convexication frames 45

  46. Conclusion โ–ช Two methods have been accelerated: โ–ช Input: flat 2D manifold โ–ช Input: curved 2D manifold โ–ช Continuous functions โ–ช Triangular mesh discretization โ–ช Convex characterization of the โ–ช Non-convex space space. โ–ช May not be feasible โ–ช Solution is guaranteed 46

  47. The End 47

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend