factorization in complement finite ideals of free monoids
play

Factorization in complement-finite ideals of free monoids Nicholas - PowerPoint PPT Presentation

Factorization in complement-finite ideals of free monoids Nicholas R. Baeth (Joint work with Matthew Enlow) March 23, 2019 Franklin & Marshall College Multiplication in Numerical Semigroups Let S = n 1 , . . . , n t = { a 1 n 1 +


  1. Factorization in complement-finite ideals of free monoids Nicholas R. Baeth (Joint work with Matthew Enlow) March 23, 2019 Franklin & Marshall College

  2. Multiplication in Numerical Semigroups Let S = � n 1 , . . . , n t � = { a 1 n 1 + · · · + a t n t : a i ∈ � 0 } be a numerical semigroup, a complement-finite additive subsemigroup of ( � 0 , + ) . ◦ S \ { 0 } is a cancellative multiplicative submonoid of � . ◦ �� \ S � < ∞ ◦ For all s ∈ S and all n ∈ � , ns ∈ S . S \ { 0 } is a complement-finite ideal of the free multiplicative submonoid � . 1

  3. Seemingly nice subsemigroups Let S be a complement-finite ideal of F ; that is, a (multiplicative) submonoid of a free (reduced) monoid F such that: ◦ � F \ S � < ∞ ◦ fs ∈ S � s ∈ S \ { 1 } and f ∈ F Examples 1. S \ { 0 } ⊆ � where S is a numerical semigroup 2. S = � \ { p , p 2 , . . . , p k } ⊆ � with p prime and k ≥ 1 . 3. S = � \ { p a q b : p , q ∈ � , ( a , b ) ∈ A ⊆ � 0 × � 0 } . 4. Generalizations of 3. 2

  4. Examples S = � 3 , 4 , 5 � = { 3 , 4 , 5 , . . . } 3

  5. Examples S = � 3 , 4 , 5 � = { 3 , 4 , 5 , . . . } ◦ A ( S ) = { p ∈ � ≥ 3 } ∪ { 2 p : p ∈ � ≥ 3 } ∪ { 4 , 8 } 3

  6. Examples S = � 3 , 4 , 5 � = { 3 , 4 , 5 , . . . } ◦ A ( S ) = { p ∈ � ≥ 3 } ∪ { 2 p : p ∈ � ≥ 3 } ∪ { 4 , 8 } ◦ α = 4 a 8 b = ⇒ � ⌈ v 2 ( α ) 3 ⌉ , ⌊ v 2 ( α ) � L ( α ) = . 2 ⌋ 3

  7. Examples S = � 3 , 4 , 5 � = { 3 , 4 , 5 , . . . } ◦ A ( S ) = { p ∈ � ≥ 3 } ∪ { 2 p : p ∈ � ≥ 3 } ∪ { 4 , 8 } ◦ α = 4 a 8 b = ⇒ � ⌈ v 2 ( α ) 3 ⌉ , ⌊ v 2 ( α ) � L ( α ) = . 2 ⌋ ◦ α = p 1 · · · p s ( 2 q 1 ) · · · ( 2 q t ) 4 a 8 b = ⇒ � ( s + t ) , ( s + t ) + ⌊ v 2 ( α ) � L ( α ) = if s >> 0. 2 ⌋ 3

  8. Examples S = � 3 , 4 , 5 � = { 3 , 4 , 5 , . . . } ◦ A ( S ) = { p ∈ � ≥ 3 } ∪ { 2 p : p ∈ � ≥ 3 } ∪ { 4 , 8 } ◦ α = 4 a 8 b = ⇒ � ⌈ v 2 ( α ) 3 ⌉ , ⌊ v 2 ( α ) � L ( α ) = . 2 ⌋ ◦ α = p 1 · · · p s ( 2 q 1 ) · · · ( 2 q t ) 4 a 8 b = ⇒ � ( s + t ) , ( s + t ) + ⌊ v 2 ( α ) � L ( α ) = if s >> 0. 2 ⌋ ◦ ρ ( S ) = 3 / 2. 3

  9. Examples S = � \ { p , p 2 , . . . , p k − 1 } ⊆ � where p is prime in � and k ≥ 2. 4

  10. Examples S = � \ { p , p 2 , . . . , p k − 1 } ⊆ � where p is prime in � and k ≥ 2. ◦ A ( S ) = { p i q : q ∈ � \ { p } , 0 ≤ i ≤ k } ∪ { p k , . . . , p 2 k − 1 } 4

  11. Examples S = � \ { p , p 2 , . . . , p k − 1 } ⊆ � where p is prime in � and k ≥ 2. ◦ A ( S ) = { p i q : q ∈ � \ { p } , 0 ≤ i ≤ k } ∪ { p k , . . . , p 2 k − 1 } ◦ α = p a = ⇒ L ( α ) = �� a � , � a . �� 2 k − 1 k 4

  12. Examples S = � \ { p , p 2 , . . . , p k − 1 } ⊆ � where p is prime in � and k ≥ 2. ◦ A ( S ) = { p i q : q ∈ � \ { p } , 0 ≤ i ≤ k } ∪ { p k , . . . , p 2 k − 1 } ◦ α = p a = ⇒ L ( α ) = �� a � , � a . �� 2 k − 1 k s , s + � a ◦ α = q 1 · · · q s p a = ⇒ L ( α ) = � if s >> 0. �� k 4

  13. Examples S = � \ { p , p 2 , . . . , p k − 1 } ⊆ � where p is prime in � and k ≥ 2. ◦ A ( S ) = { p i q : q ∈ � \ { p } , 0 ≤ i ≤ k } ∪ { p k , . . . , p 2 k − 1 } ◦ α = p a = ⇒ L ( α ) = �� a � , � a . �� 2 k − 1 k s , s + � a ◦ α = q 1 · · · q s p a = ⇒ L ( α ) = � if s >> 0. �� k ◦ ρ ( S ) = 2 k − 1 k . 4

  14. Examples S = � 6 , 2 k , 3 k � 5

  15. Examples S = � 6 , 2 k , 3 k � ◦ Irreducibles that divide 6 2 k − 1 are: 6, 2 k , . . . , 2 2 k − 1 , 3 k , . . . , 3 2 k − 1 , 6 · 2 i , 6 · 3 i with 1 ≤ i ≤ k − 1 5

  16. Examples S = � 6 , 2 k , 3 k � ◦ Irreducibles that divide 6 2 k − 1 are: 6, 2 k , . . . , 2 2 k − 1 , 3 k , . . . , 3 2 k − 1 , 6 · 2 i , 6 · 3 i with 1 ≤ i ≤ k − 1 ◦ 6 2 k − 1 = ( 2 2 k − 1 )( 3 2 k − 1 ) and so ρ ( S ) ≥ ρ ( 6 2 k − 1 ) = k − 1 2 . 5

  17. Examples S = � 6 , 2 k , 3 k � ◦ Irreducibles that divide 6 2 k − 1 are: 6, 2 k , . . . , 2 2 k − 1 , 3 k , . . . , 3 2 k − 1 , 6 · 2 i , 6 · 3 i with 1 ≤ i ≤ k − 1 ◦ 6 2 k − 1 = ( 2 2 k − 1 )( 3 2 k − 1 ) and so ρ ( S ) ≥ ρ ( 6 2 k − 1 ) = k − 1 2 . ◦ L ( 6 2 k − 1 ) = [ 2 , 2 k − 1 ] 5

  18. Irreducible Elements Let S be a complement-finite ideal of a free (reduced) monoid F = F ( P ) . The irreducible elements of S are those with the following forms: 1. p ∈ P ∩ S 2. px with p ∈ P ∩ S and x ∈ F \ S 3. q r 1 1 · · · q r t t with q 1 , . . . q t ∈ P \ S and ( r 1 , . . . , r t ) almost minimal Moreover, no irreducible element is prime in S . For each s ∈ S , the combined number of irreducibles of types (1) and (2) is independent of the factorization. 6

  19. Factorizations S a complement-finite ideal of F = F ( P ) P \ S = { p 1 , . . . , p t } with k i = min { k : p k i ∈ S } ◦ n ≥ k i = ⇒ L S ( p n i ) = L T ( n ) where T = � k i , . . . , 2 k i − 1 � . ◦ n i ≥ k i � i = ⇒ L ( p n 1 1 · · · p n t i = 1 L S ( p n i t ) ⊇ � t i ) ◦ ρ ( S ) ≤ M m where M = max { n 1 + · · · + n t : p n 1 1 · · · p n t t ∈ A ( S ) } and 1 · · · p n t m = min { n 1 + · · · + n t : p n 1 t ∈ A ( S ) } i = 1 [ k i , 2 k i − 1 ] and α = p a 1 1 · · · p a t ◦ N ∈ � t t ∈ A ( S ) t ) a t and ρ ( α ) ≥ = ⇒ α N = ( p N 1 ) a 1 · · · ( p N N a 1 + ··· + a n . 7

  20. C -monoid structure S a complement-finite ideal of a (reduced) free monoid F . 1. Then S is not a Krull monoid. [It’s not completely integrally closed.] 2. S is a C -monoid. Moreover, the class semigroup C ∗ ( S , F ) has exactly two idempotent elements: { 1 } and S . Recall that C ∗ ( S , F ) = {[ x ] : x ∈ F } with [ x ] = [ y ] whenever xa ∈ S ⇔ ya ∈ S , and S is a C -monoid when � C ∗ ( S , F ) � < ∞ . 8

  21. A Transfer Homomorphism Let S be an complement-finite ideal of a free monoid F and let C = C ∗ ( S , F ) = { e , c 1 , . . . , c n , h } denote its class semigroup, where e = { 1 } and h = S \ { 1 } are the two idempotent elements. Let � c v i B ∗ ( S ) = { c v 1 1 · · · c v n = h } ⊆ F ( { c 1 , . . . , c n } ) . : n i � ����� �� ����� � ���� formal product actual product The natural projection from S to B ∗ ( S ) is a transfer homomorphism. 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend