factoring polynomials over discrete valuation rings
play

Factoring polynomials over discrete valuation rings Adrien Poteaux - PowerPoint PPT Presentation

Introduction Definitions Irreducibility test Factorisation Conclusion Factoring polynomials over discrete valuation rings Adrien Poteaux & Martin Weimann : CFHP - CO2 - CRIStAL - Universit de Lille : GAATI - Universit de


  1. Introduction Definitions Irreducibility test Factorisation Conclusion Factoring polynomials over discrete valuation rings Adrien Poteaux ⋆ & Martin Weimann ✈ ⋆ : CFHP - CO2 - CRIStAL - Université de Lille ✈ : GAATI - Université de Polynésie Française 7 février 2019 Journées Nationales de Calcul Formel CIRM, Luminy adrien.poteaux@univ-lille.fr Factorisation over DVR 1 / 14

  2. Introduction Definitions Irreducibility test Factorisation Conclusion One example F = ( y α − x 2 ) 2 + x α ∈ A [ y ] with A = C [[ x ]] d = deg ( F ) = 2 α , δ = υ x ( Disc ( F )) = 2 α 2 − 4 α + 4. Assume α > 4 odd. Is F irreducible in C [[ x ]][ y ] ? adrien.poteaux@univ-lille.fr One example 1 / 14

  3. Introduction Definitions Irreducibility test Factorisation Conclusion Using the Newton-Puiseux algorithm. F = ( y α − x 2 ) 2 + x α ∆ , slope − 2 4 α φ ∆ ( z ) = ( z − 1 ) 2 1 G ← F ( x α , x 2 ( y + 1 )) / x 4 α , 2 2 Hensel: G = A · B , α 2 α α 2 − 4 α 3 Recursive call with A A Polynomial size φ ∆ ( z ) = z + c α Θ( α 2 ) = Θ( δ ) F Θ( α 3 ) = Θ( d δ ) G B Θ( α 2 ) = Θ( δ ) A 2 2 α Answer: Yes complexity: Θ( d δ ) Answer in O ˜( δ ) ? adrien.poteaux@univ-lille.fr One example 2 / 14

  4. Introduction Definitions Irreducibility test Factorisation Conclusion Another way ? α 2 − 4 α N ( A ) φ ∆ ( z ) = z + c α F = ( y α − x 2 ) 2 + x α 2 Writing ψ = y α − x 2 , we have F = ψ 2 + x α , Can we “guess” the second Newton polygon from ψ 2 + x α ? Can we “read” φ ∆ ? adrien.poteaux@univ-lille.fr One example 3 / 14

  5. Introduction Definitions Irreducibility test Factorisation Conclusion Another way ? α 2 − 4 α N ( A ) φ ∆ ( z ) = z + c α F = ( y α − x 2 ) 2 + x α 2 Writing ψ = y α − x 2 , we have F = ψ 2 + x α , Can we “guess” the second Newton polygon from ψ 2 + x α ? Can we “read” φ ∆ ? Key ingredients: √ 2 ψ = F is an approximate root of F , F = ψ 2 + x α is the ψ -adic expansion of F . adrien.poteaux@univ-lille.fr One example 3 / 14

  6. Introduction Definitions Irreducibility test Factorisation Conclusion Another way ? α 2 − 4 α N ( A ) φ ∆ ( z ) = z + c α F = ( y α − x 2 ) 2 + x α 2 Writing ψ = y α − x 2 , we have F = ψ 2 + x α , Can we “guess” the second Newton polygon from ψ 2 + x α ? Can we “read” φ ∆ ? Key ingredients: √ 2 ψ = F is an approximate root of F , F = ψ 2 + x α is the ψ -adic expansion of F . Questions: Why x α corresponds to α 2 − 4 α ? How to recover the correct characteristic polynomial ? adrien.poteaux@univ-lille.fr One example 3 / 14

  7. Introduction Definitions Irreducibility test Factorisation Conclusion This talk Context: A a discrete valuation ring (e.g. K (( x )) , Q p ), υ A valuation over A (e.g. υ x , υ p ), F ∈ A [ y ] (monic). Objective(s): 1 Irreducibility test in A [ y ] , 2 Factorisation of F in A [ y ] . 3 Case A = K [[ x ]] : Puiseux series of F ? Notations: d = deg ( F ) ; δ = υ A ( Disc ( F )) adrien.poteaux@univ-lille.fr Factorisation over DVR 4 / 14

  8. Introduction Definitions Irreducibility test Factorisation Conclusion Approximate root of F ∈ A [ y ] monic [Ab10] Hyp: char ( A ) does not divide d , Let N ∈ N dividing d , Proposition There is an unique monic ψ ∈ A [ y ] such that: deg ( ψ ) = d / N , deg ( F − ψ N ) < d − d / N , √ N ❀ ψ = F is the N -th approximate root of F . √ F = y + a d − 1 d Example: ψ = is the d -th approximate root of F . d adrien.poteaux@univ-lille.fr Approximate roots of Abhyankar-Moh 5 / 14

  9. Introduction Definitions Irreducibility test Factorisation Conclusion Valuations on A [ y ] Gauss valuation: F = � i a i y i , υ 0 ( F ) = min i υ A ( a i ) . Extended valuation: given ψ ∈ A [ y ] monic, m q ∈ Q : υ ψ = ( υ 0 , ψ, m q ) extends υ 0 . Defined by υ ψ ( ψ ) = m q , υ ψ ( y ) = m and υ ψ ( x ) = q , Expand F = � i a i ( y ) ψ i with deg ( a i ) < deg ( ψ ) , Generalised Newton polygon: N ψ ( F ) is the lower convex hull of ( i , υ ψ ( a i ψ i ) − υ ψ ( F )) i . adrien.poteaux@univ-lille.fr Extended valuation 6 / 14

  10. Introduction Definitions Irreducibility test Factorisation Conclusion Improving the irreducibility test generalisation of the work of Abhyankhar to A [ y ] . link with the Newton–Puiseux algorithm for A = K (( x )) adrien.poteaux@univ-lille.fr Irreducibility in A [ y ] 7 / 14

  11. Introduction Definitions Irreducibility test Factorisation Conclusion We get the second Newton polygon ! F = ( y α − x 2 ) 2 + x α ∆ , slope − 2 4 α φ ∆ ( z ) = ( z − 1 ) 2 √ N ( F ) 2 With m = 2, q = α , ψ = F , we get: 2 α F = ψ 2 + x α . α 2 − 4 α υ ψ ( F ) = 4 α N ψ ( F ) υ ψ ( ψ 2 ) − υ ψ ( F ) = 0, υ ψ ( x α ) − υ ψ ( F ) = α 2 − 4 α . 2 Reminder: υ ψ ( x ) = α υ ψ ( y ) = 2 υ ψ ( ψ ) = 2 α adrien.poteaux@univ-lille.fr Irreducibility in A [ y ] 7 / 14

  12. Introduction Definitions Irreducibility test Factorisation Conclusion Complexity ? √ N Computing F : O ( M ( d )) = O ˜( d ) op in A . F ∞ = y d F ( 1 / y ) the reciprocal polynomial of F , F ∞ ( 0 ) = 1 ❀ ∃ ! φ ∈ A [[ y ]] s.t. φ ( 0 ) = 1 and φ N = F ∞ , φ is the root of Z N − F ∞ = 0 ❀ Newton iteration ! d ψ is the reciprocal polynomial of ⌈ φ ⌉ N adrien.poteaux@univ-lille.fr Irreducibility in A [ y ] 8 / 14

  13. Introduction Definitions Irreducibility test Factorisation Conclusion Complexity ? √ N Computing F : O ( M ( d )) = O ˜( d ) op in A . F ∞ = y d F ( 1 / y ) the reciprocal polynomial of F , F ∞ ( 0 ) = 1 ❀ ∃ ! φ ∈ A [[ y ]] s.t. φ ( 0 ) = 1 and φ N = F ∞ , φ is the root of Z N − F ∞ = 0 ❀ Newton iteration ! d ψ is the reciprocal polynomial of ⌈ φ ⌉ N ψ -adic expansion: O ( M ( d ) log ( N )) = O ˜( d ) op in A . N 2 + B ❀ O ( M ( d )) F = A ψ Recursive call on A and B . adrien.poteaux@univ-lille.fr Irreducibility in A [ y ] 8 / 14

  14. Introduction Definitions Irreducibility test Factorisation Conclusion Complexity ? √ N Computing F : O ( M ( d )) = O ˜( d ) op in A . F ∞ = y d F ( 1 / y ) the reciprocal polynomial of F , F ∞ ( 0 ) = 1 ❀ ∃ ! φ ∈ A [[ y ]] s.t. φ ( 0 ) = 1 and φ N = F ∞ , φ is the root of Z N − F ∞ = 0 ❀ Newton iteration ! d ψ is the reciprocal polynomial of ⌈ φ ⌉ N ψ -adic expansion: O ( M ( d ) log ( N )) = O ˜( d ) op in A . N 2 + B ❀ O ( M ( d )) F = A ψ Recursive call on A and B . Truncation: n = 2 δ/ d . Total cost: δ plog ( d ) ! adrien.poteaux@univ-lille.fr Irreducibility in A [ y ] 8 / 14

  15. Introduction Definitions Irreducibility test Factorisation Conclusion Miscellaneous More than one Newton–Puiseux recursive call ? Compute successive approximate roots ψ 0 , · · · , ψ k ψ − 1 = x Recursive augmented valuations υ k = ( υ k − 1 , ψ k , m k q k ) :  υ k ( ψ i ) = q k υ k − 1 ( ψ i ) − 1 ≤ i < k − 1   υ k ( ψ k − 1 ) = q k υ k − 1 ( ψ k − 1 ) + m k   υ k ( ψ k ) = q k υ k ( ψ k − 1 ) N k ( F ) via generalised ( ψ 0 , · · · , ψ k ) -adic expansions Compute the characteristic polynomials ? The coefficients of the ψ -adic expansions must be corrected , Compute some λ k ( ψ i ) ∈ K k (tower of fields). Make a single (univariate) irreducibility test ? Rely on dynamic evaluation. adrien.poteaux@univ-lille.fr Irreducibility in A [ y ] 9 / 14

  16. Introduction Definitions Irreducibility test Factorisation Conclusion Hensel–Newton algorithm and extended valuations adrien.poteaux@univ-lille.fr Irreducibility in A [ y ] 10 / 14

  17. Introduction Definitions Irreducibility test Factorisation Conclusion Slope factorisation [CaRoVa16] d � a i y i F ( y ) = i = 0 β a “break” of N ( F ) , A ( y ) β � a i y i , V 0 = 1, A 0 = i = 0 B ( y ) Newton iteration: A k + 1 = A k + ( V k F % A k ) β d B k + 1 = F � A k + 1 ( 2 V k − V 2 V k + 1 = k B k + 1 )% A k + 1 Factorisation up to precision n ❀ O ˜( n d ) adrien.poteaux@univ-lille.fr Newton–Hensel and extended valuations 10 / 14

  18. Introduction Definitions Irreducibility test Factorisation Conclusion Hensel lemma works with extended valuations Lemma Assume B = ψ b + · · · and υ ( B ) = b υ ( ψ ) . Then υ ( A % B ) ≥ υ ( A ) , υ ( A � B ) ≥ υ ( A ) − υ ( B ) . adrien.poteaux@univ-lille.fr Newton–Hensel and extended valuations 11 / 14

  19. Introduction Definitions Irreducibility test Factorisation Conclusion Hensel lemma works with extended valuations Lemma Assume B = ψ b + · · · and υ ( B ) = b υ ( ψ ) . Then υ ( A % B ) ≥ υ ( A ) , υ ( A � B ) ≥ υ ( A ) − υ ( B ) . Theorem Assume υ ( F − G H ) ≥ υ ( F ) + n and υ ( S G + T H − 1 ) ≥ n . Then ˜ G , ˜ H , ˜ S , ˜ T = HenselStep ( F , G , H , S , T ) satisfies: υ ( F − ˜ G ˜ H ) ≥ υ ( F ) + 2 n , υ ( ˜ S ˜ G + ˜ T ˜ H − 1 ) ≥ 2 n . adrien.poteaux@univ-lille.fr Newton–Hensel and extended valuations 11 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend