fabio sebastiano
play

Fabio Sebastiano Electronic interfaces for quantum processors the - PowerPoint PPT Presentation

Fabio Sebastiano Electronic interfaces for quantum processors the challenges A scalable quantum computer ADC MUX ADC N-qubit Digital Quantum control Processor DAC Challenges DEMUX Performance DAC Power Cryogenic T


  1. Fabio Sebastiano Electronic interfaces for quantum processors – the challenges

  2. A scalable quantum computer ADC MUX ADC N-qubit Digital Quantum control Processor DAC Challenges DEMUX • Performance DAC • Power • Cryogenic T sensor References T = 20 mK – 100 mK T = 1 K - 4 K T = 300 K

  3. Electronics at cryogenic temperature? • Operate @ 4 K, 20 mK, … • Superconducting devices (RSFQ, RQL, SQUID, JPA …) • Semiconductors Minimum temp. Si BJT 100 K Ge BJT 20 K Most used today SiGe HBT < 1 K VLSI GaAs MESFET < 4 K Very Large Scale CMOS* 30 mK or below? Integration *CMOS = Complementary Metal Oxide Semiconductor

  4. Cryo-CMOS for scalable quantum computing Specifications ADC MUX ADC Cryo-CMOS N-qubit Digital devices Quantum control Processor DAC DEMUX Challenges DAC • Performance • Power T sensor References • Cryogenic T = 20 mK – 100 mK T = 1 K - 4 K T = 300 K

  5. Specifications – Co-simulating cryo-CMOS and qubits Qubit simulator Circuit simulator (Hamiltonian) Electrical signals V DD R bias1 M 6 Ω Fidelity M 5 M 10 M 7 (control) C AC M 2 M 4 V B2 Fidelity M 1 M 3 (read-out)

  6. Example – Microwave generation Electrical specifications Error Source Type Value Error [ppm] Nuclear spin noise 1.9 kHz rms 4 inaccuracy 11.2 kHz 125 Microwave frequency noise 11.2 kHz rms 125 (nominally 6 GHz) wideband noise 12 μV rms 125 Phase Inaccuracy 0.64° 125 Microwave amplitude inaccuracy 14 μV 125 (nominally 17 mV) noise 14 μV rms 125 Microwave duration inaccuracy 3.6 ps 125 (nominally 50 ns) noise 3.6 ns rms 125 + 1000 ppm (Rabi freq. 1 MHz) ⇒ Fidelity = 99.9%

  7. Example – Microwave generation 640 MHz Q1 Q2 Q64 . . . CMOS @ room-temperature • – Digital-to-analog converter (10-bit 500 MS/s) P = 24 mW – Phase-locked loop (9.2 - 12.7 GHz) P = 13 mW P tot = 37 mW/qubit With frequency multiplexing? • – Digital-to-analog converter (12-bit 1.6 GS/s) P = 40 mW – Phase-locked loop (9.2 - 12.7 GHz) P = 13 mW P tot < 1 mW/qubit [Lin, JSSC 2012] [Raczkowski, JSSC 2015] [Lin, JSSC 2014]

  8. Cryo-CMOS devices 40 40 40 T=300K T=300K T=300K T=20K T=20K T=4K 30 30 30 + I DS V DS + I DS [ µ A] I DS [ µ A] I DS [ µ A] NMOS NMOS NMOS V GS 20 20 20 _ _ 10 10 10 W/L=0.4/1.61 PMOS PMOS PMOS 0.322-μm CMOS V GS = 1.5 V 0 0 0 0 0 0 0.5 0.5 0.5 1 1 1 1.5 1.5 1.5 2 2 2 2.5 2.5 2.5 V DS [V] V DS [V] V DS [V]

  9. Cryo-CMOS devices 2 2 0.8 0.8 0.16 µ m CMOS – thick oxide 40 nm CMOS – thin oxide 1.5 1.5 0.6 0.6 I D [mA] I D [mA] I D [ µ A] I D [ µ A] 1 1 0.4 0.4 0.5 0.5 0.2 0.2 0 0 0 0 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 3 3 3.3 3.3 0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1 1 1.1 1.1 V DS [V] V DS [V] V DS [V] V DS [V]

  10. Towards a scalable quantum computer Low-noise amplifier Cryo-FPGA ADC ADC MUX MUX ADC ADC N-qubit N-qubit Digital Digital Quantum Quantum control control Processor Processor DAC DAC DEMUX DEMUX DAC DAC T sensor T sensor References References T = 20 mK – 100 mK T = 20 mK – 100 mK T = 300 K T = 300 K T = 1 K - 4 K T = 1 K - 4 K Temp. sensors RF oscillator

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend