extremes of supou processes
play

Extremes of supOU processes Vicky Fasen August 16, 2005 - PowerPoint PPT Presentation

Extremes of supOU processes Vicky Fasen August 16, 2005 fasen@ma.tum.de Graduate Program Applied Algorithmic Mathematics Munich University of Technology http://www-m4.ma.tum.de/pers/fasen/ Vicky Fasen p. 1/22 Overview


  1. Extremes of supOU processes Vicky Fasen August 16, 2005 fasen@ma.tum.de Graduate Program ”Applied Algorithmic Mathematics” Munich University of Technology http://www-m4.ma.tum.de/pers/fasen/ Vicky Fasen – p. 1/22

  2. Overview • Introduction ◮ i. d. i. s. r.m ◮ SupOU process ◮ Class of convolution equivalent tails ◮ Model assumptions of this talk • Extremal behavior • Conclusion Vicky Fasen – p. 2/22

  3. i. d. i. s. r. m Definition A stochastic process Λ = { Λ( A ) : A ∈ B ( R + × R ) } is called an i. d. i. s. r. m. (infinitely divisible independently scattered random measure) on R + × R , if for disjoint sets ( A n ) n ∈ N in B ( R + × R ) , � ∞ � ∞ � � (r. m.) • Λ A n = Λ( A n ) a. s. n =1 n =1 (i. s.) • (Λ( A n )) n ∈ N is an independent sequence • Λ( A ) is infinitely divisible for every A ∈ B ( R + × R ) (i. d.) Vicky Fasen – p. 3/22

  4. i. d. i. s. r. m We consider only i. d. i. s. r. m. with characteristic function E [exp ( iu Λ( A ))] = exp(Π( A ) ψ ( u )) for u ∈ R , A ∈ B ( R + × R + ) , where • ψ is the cumulant generating function of a Lévy process with generating triplet ( m, σ 2 , ν ) E [exp ( iuL ( t ))] = exp ( tψ ( u )) • Π( dω ) = π ( dr ) × λ ( dt ) for ω = ( r, t ) ∈ R + × R , where λ is the Lebesgue measure and π is a probability measure on R + ( m, σ 2 , ν, π ) are called the generating quadruple of Λ Vicky Fasen – p. 4/22

  5. i. d. i. s. r. m We consider only i. d. i. s. r. m. with characteristic function E [exp ( iu Λ( A ))] = exp(Π( A ) ψ ( u )) for u ∈ R , A ∈ B ( R + × R + ) , where • ψ is the cumulant generating function of a Lévy process with generating triplet ( m, σ 2 , ν ) E [exp ( iuL ( t ))] = exp ( tψ ( u )) • Π( dω ) = π ( dr ) × λ ( dt ) for ω = ( r, t ) ∈ R + × R , where λ is the Lebesgue measure and π is a probability measure on R + ( m, σ 2 , ν, π ) are called the generating quadruple of Λ Λ is called Lévy random field Vicky Fasen – p. 4/22

  6. Compound Poisson random measure Let ν be finite. Then ∞ � N = ε ( R k , Γ k ,Z k ) k =1 where • ( R k ) i. i. d. with d. f. π • (Γ k ) jump times of a Poisson process with intensity µ = ν ( R ) • ( Z k ) i. i. d. with d. f. ν/µ is a Poisson random measure with intensity π ( dr ) × dt × ν ( dx ) ∞ � � Λ( A ) = x dN ( A, x ) = Z k 1 { ( R k , Γ k ) ∈ A } R k =1 is a compound Poisson random measure Vicky Fasen – p. 5/22

  7. Compound Poisson random measure Let ν be finite. Then ∞ � N = ε ( R k , Γ k ,Z k ) k =1 where • ( R k ) i. i. d. with d. f. π • (Γ k ) jump times of a Poisson process with intensity µ = ν ( R ) • ( Z k ) i. i. d. with d. f. ν/µ is a Poisson random measure with intensity π ( dr ) × dt × ν ( dx ) ∞ � � Λ( A ) = x dN ( A, x ) = Z k 1 { ( R k , Γ k ) ∈ A } R k =1 is a Lévy jump field Vicky Fasen – p. 5/22

  8. Compound Poisson random measure Let ν be finite. Then ∞ � N = ε ( R k , Γ k ,Z k ) k =1 where • ( R k ) i. i. d. with d. f. π • (Γ k ) jump times of a Poisson process with intensity µ = ν ( R ) • ( Z k ) i. i. d. with d. f. ν/µ is a Poisson random measure with intensity π ( dr ) × dt × ν ( dx ) N ( t ) ∞ � � Λ( R + × [0 , t ]) = Z k 1 { ( R k , Γ k ) ∈ R + × [0 ,t ] } = Z k k =1 k =1 Vicky Fasen – p. 5/22

  9. Underlying Lévy process Let Λ be an i. d. i. s. r. m. We denote by L = ( L ( t )) t ∈ R the underlying driving Lévy process with L ( t ) = Λ( R + × [0 , t ]) L has the characteristic triplet ( m, σ 2 , ν ) Vicky Fasen – p. 6/22

  10. supOU process Definition The supOU process (superposition of Ornstein-Uhlenbeck processes) Y is defined by � e − r ( t − s ) 1 [0 , ∞ ) ( t − s ) d Λ( r, s ) Y ( t ) = R + × R where � log | x | ν ( dx ) < ∞ • | x |≥ 2 � • λ − 1 = r − 1 π ( dr ) < ∞ R + Vicky Fasen – p. 7/22

  11. Special cases • Λ a compound Poisson random measure ( Λ( A ) = � ∞ k =1 Z k 1 { ( R k , Γ k ) ∈ A } ): N ( t ) � e − r ( t − s ) 1 [0 , ∞ ) ( t − s ) d Λ( r, s ) = � e − R k ( t − Γ k ) Z k Y ( t ) = R + × R k = −∞ � t e − λ ( t − s ) dL ( s ) • OU-process : π ( λ ) = 1 : Y ( t ) = −∞ • π discrete with π ( λ k ) = p k and � ∞ k =1 p k = 1 . Then � t ∞ e − λ k ( t − s ) dL k ( s ) � Y ( t ) = −∞ k =1 where ( L k ) are independent Lévy processes with characteristic triplet ( p k m, p k σ 2 , p k ν ) Vicky Fasen – p. 8/22

  12. Properties of a supOU process • ( m, σ 2 , ν ) determines the marginal distribution : Y = σ 2 1 y � � � σ 2 m Y = m + | y | ν ( dy ) λ 2 λ | y | > 1 � ∞ 1 ν [ y, ∞ ) ν Y [ x, ∞ ) = dy λ y x • π determines the correlation function ρ : � ∞ r − 1 e − hr π ( dr ) ρ ( h ) = λ 0 e. g. π ( dr ) = Γ(2 H + 1) − 1 r 2 H e − r dr for r > 0 , H > 0 , then ρ ( h ) = ( h + 1) − 2 H for h ≥ 0 Vicky Fasen – p. 9/22

  13. Properties of a supOU process • ( m, σ 2 , ν ) determines the marginal distribution : Y = σ 2 1 y � � � σ 2 m Y = m + | y | ν ( dy ) λ 2 λ | y | > 1 � ∞ 1 ν [ y, ∞ ) λ − 1 = R + r − 1 π ( dr ) � ν Y [ x, ∞ ) = dy λ y x • π determines the correlation function ρ : � ∞ r − 1 e − hr π ( dr ) ρ ( h ) = λ 0 e. g. π ( dr ) = Γ(2 H + 1) − 1 r 2 H e − r dr for r > 0 , H > 0 , then ρ ( h ) = ( h + 1) − 2 H for h ≥ 0 Vicky Fasen – p. 9/22

  14. Properties of a supOU process • ( m, σ 2 , ν ) determines the marginal distribution : Y = σ 2 1 y � � � σ 2 m Y = m + | y | ν ( dy ) λ 2 λ | y | > 1 � ∞ 1 ν [ y, ∞ ) ν Y [ x, ∞ ) = dy λ y x • π determines the correlation function ρ : � ∞ r − 1 e − hr π ( dr ) ρ ( h ) = λ 0 e. g. π ( dr ) = Γ(2 H + 1) − 1 r 2 H e − r dr for r > 0 , H > 0 , then ρ ( h ) = ( h + 1) − 2 H for h ≥ 0 Reference: Barndorff-Nielsen (2001), Barndorff-Nielsen and Shephard (2001) Vicky Fasen – p. 9/22

  15. Examples supOU process 40 30 20 10 0 200 400 600 800 1000 1200 1400 1600 1800 2000 OU process 40 30 20 10 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Vicky Fasen – p. 10/22

  16. Class of convolution equivalent tails S ( γ ) Let F be a d. f. on R with F ( x ) < 1 for every x ∈ R . F belongs to the class S ( γ ) , γ ≥ 0 , if (i) F belongs to the class L ( γ ) , γ ≥ 0 , i. e. for all y ∈ R locally uniformly x →∞ F ( x + y ) /F ( x ) = e − γy lim � e γx dF ( x ) < ∞ x →∞ F 2 ∗ ( x ) /F ( x ) = 2 (ii) lim R The class γ = 0 is called subexponential d. f. s denoted by S Examples: • γ = 0 : stable-, Weibull-, loggamma-, Pareto distribution • γ > 0 : generalized inverse Gaussian distribution Vicky Fasen – p. 11/22

  17. Properties of S ( γ ) Let F be infinitely divisible with Lévy measure ν and γ ≥ 0 . Then ν (1 , · ] F ∈ S ( γ ) ⇔ ν (1 , ∞ ) ∈ S ( γ ) F ( x ) � e γx F ( dx ) ⇔ lim ν ( x, ∞ ) = x →∞ R Vicky Fasen – p. 12/22

  18. Model In this talk we restrict our attention to a supOU process driven by a positive compound Poisson random measure , i. e. Z k is positive and ν ( R ) < ∞ . N ( t ) � e − R k ( t − Γ k ) Z k Y ( t ) = k = −∞ a) L (1) ∈ S ( γ ) ∩ MDA(Λ) : n →∞ n P ( L (1) > a n x + b n ) = e − x lim b) L (1) ∈ S ( γ ) ∩ MDA(Φ α ) = R α : n →∞ n P ( L (1) > a n x ) = x − α lim Vicky Fasen – p. 13/22

  19. Overview • Introduction • Extremal behavior ◮ Tail behavior of Y ◮ Tail behavior of M ( h ) ◮ Point process behavior ◮ Running maxima • Conclusion Vicky Fasen – p. 14/22

  20. Representation If L (1) ∈ L ( γ ) then � x 1 � � P ( L (1) > x ) = c ( x ) exp − a ( y ) dy , x > 0 , 0 where a, c : R + → R + x →∞ c ( x ) = c > 0 lim a is absolutely continuous x →∞ a ( x ) = 1 lim γ x →∞ a ′ ( x ) = 0 lim Vicky Fasen – p. 15/22

  21. Tail behavior of Y ( t ) x →∞ a ( x ) /x = 0 lim x →∞ a ( x ) = 1 /γ lim a) L (1) ∈ S ( γ ) ∩ MDA(Λ) : E e γY ( t ) P ( Y ( t ) > x ) ∼ 1 a ( x ) E e γL (1) P ( L (1) > x ) for x → ∞ λ x b) L (1) ∈ S ( γ ) ∩ MDA(Φ α ) : 1 P ( Y ( t ) > x ) ∼ λα P ( L (1) > x ) for x → ∞ Vicky Fasen – p. 16/22

  22. Tail behavior of M ( h ) Let h > 0 and M ( h ) = sup 0 ≤ t ≤ h Y ( t ) a) L (1) ∈ S ( γ ) ∩ MDA(Λ) : P ( M ( h ) > x ) ∼ h E e γY ( t ) E e γL (1) P ( L (1) > x ) for x → ∞ b) L (1) ∈ S ( γ ) ∩ MDA(Φ α ) : P ( M ( h ) > x ) ∼ [ h + ( λα ) − 1 ] P ( L (1) > x ) for x → ∞ Vicky Fasen – p. 17/22

  23. Example: OU-Weibull Process L ( t ) = � N ( t ) Y ( t ) = � N ( t ) k = −∞ e − λ ( t − Γ k ) Z k k =1 Z k , Path of a OU−Weibull−process, p=0.5 30 25 Y( Γ k )=Z k +Y( Γ k ) −Z K 20 15 10 5 0 20 40 60 80 100 120 140 160 180 200 Vicky Fasen – p. 18/22

  24. Example: OU-Weibull Process a − 1 Y (Γ k ) > a T x + b T T ( Y (Γ k ) − b T ) > x ⇐ ⇒ Path of a OU−Weibull−process, p=0.5 30 25 Y( Γ k )=Z k +Y( Γ k ) −Z K 20 u T (x) =a T x+b T 15 10 5 0 20 40 60 80 100 120 140 160 180 200 tT sT Vicky Fasen – p. 18/22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend