extreme value statistics integer partitions and bose gas
play

Extreme Value Statistics, Integer Partitions and Bose Gas Satya N. - PowerPoint PPT Presentation

Extreme Value Statistics, Integer Partitions and Bose Gas Satya N. Majumdar Laboratoire de Physique Th eorique et Mod` eles Statistiques,CNRS, Universit e Paris-Sud, France February 27, 2008 Collaborators: A. Comtet (LPTMS, Orsay,


  1. Extreme Value Statistics, Integer Partitions and Bose Gas Satya N. Majumdar Laboratoire de Physique Th´ eorique et Mod` eles Statistiques,CNRS, Universit´ e Paris-Sud, France February 27, 2008 Collaborators: A. Comtet (LPTMS, Orsay, FRANCE) P. Leboeuf (LPTMS, Orsay, FRANCE) Ref: Phys. Rev. Lett. 98, 070404 (2007) S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  2. Plan Plan: • A brief review on Extreme Value Statistics of i.i.d random variables ⇒ three limiting distributions: GUMBEL, FR´ = ECHET & WEIBULL S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  3. Plan Plan: • A brief review on Extreme Value Statistics of i.i.d random variables ⇒ three limiting distributions: GUMBEL, FR´ = ECHET & WEIBULL • Integer Partition Problem = ⇒ Ideal Bose Gas S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  4. Plan Plan: • A brief review on Extreme Value Statistics of i.i.d random variables ⇒ three limiting distributions: GUMBEL, FR´ = ECHET & WEIBULL • Integer Partition Problem = ⇒ Ideal Bose Gas • Same three limiting distributions in the Integer Partition/Bose gas S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  5. Plan Plan: • A brief review on Extreme Value Statistics of i.i.d random variables ⇒ three limiting distributions: GUMBEL, FR´ = ECHET & WEIBULL • Integer Partition Problem = ⇒ Ideal Bose Gas • Same three limiting distributions in the Integer Partition/Bose gas • Summary and Conclusions S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  6. Law of Averages: Central Limit Theorem • { X 1 , X 2 , . . . , X N } = ⇒ set of N i.i.d random variables —each drawn from p ( x ) → parent distribution S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  7. Law of Averages: Central Limit Theorem • { X 1 , X 2 , . . . , X N } = ⇒ set of N i.i.d random variables —each drawn from p ( x ) → parent distribution Average: ¯ X = X 1 + X 2 + ... + X N • N S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  8. Law of Averages: Central Limit Theorem • { X 1 , X 2 , . . . , X N } = ⇒ set of N i.i.d random variables —each drawn from p ( x ) → parent distribution Average: ¯ X = X 1 + X 2 + ... + X N • N • Probability distribution of ¯ X ? S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  9. Law of Averages: Central Limit Theorem • { X 1 , X 2 , . . . , X N } = ⇒ set of N i.i.d random variables —each drawn from p ( x ) → parent distribution Average: ¯ X = X 1 + X 2 + ... + X N • N • Probability distribution of ¯ X ? • Central Limit Theorem = ⇒ xp ( x ) dx and σ 2 = x 2 p ( x ) dx − µ 2 is finite, then for large N , if µ = � � S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  10. Law of Averages: Central Limit Theorem • { X 1 , X 2 , . . . , X N } = ⇒ set of N i.i.d random variables —each drawn from p ( x ) → parent distribution Average: ¯ X = X 1 + X 2 + ... + X N • N • Probability distribution of ¯ X ? • Central Limit Theorem = ⇒ xp ( x ) dx and σ 2 = x 2 p ( x ) dx − µ 2 is finite, then for large N , if µ = � � � √ � z � −∞ e − u 2 / 2 du Prob [ ¯ N ( x − µ ) 1 X ≤ x ] → G where G [ z ] = √ σ 2 π S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  11. Law of Averages: Central Limit Theorem • { X 1 , X 2 , . . . , X N } = ⇒ set of N i.i.d random variables —each drawn from p ( x ) → parent distribution Average: ¯ X = X 1 + X 2 + ... + X N • N • Probability distribution of ¯ X ? • Central Limit Theorem = ⇒ xp ( x ) dx and σ 2 = x 2 p ( x ) dx − µ 2 is finite, then for large N , if µ = � � � √ � z � −∞ e − u 2 / 2 du Prob [ ¯ N ( x − µ ) 1 X ≤ x ] → G where G [ z ] = √ σ 2 π 2 π e − z 2 / 2 = Prob. density: G ′ ( z ) = 1 ⇒ GAUSSIAN √ = ⇒ LAW OF AVERAGES S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  12. Extreme Value Statistics of i.i.d Random Variables • { X 1 , X 2 , . . . , X N } = ⇒ set of N i.i.d random variables —each drawn from p ( x ) → parent distribution S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  13. Extreme Value Statistics of i.i.d Random Variables • { X 1 , X 2 , . . . , X N } = ⇒ set of N i.i.d random variables —each drawn from p ( x ) → parent distribution • M N = max ( X 1 , X 2 , . . . , X N ) S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  14. Extreme Value Statistics of i.i.d Random Variables • { X 1 , X 2 , . . . , X N } = ⇒ set of N i.i.d random variables —each drawn from p ( x ) → parent distribution • M N = max ( X 1 , X 2 , . . . , X N ) • Q N ( x ) = Prob [ M N ≤ x ] = Prob [ X 1 ≤ x , X 2 ≤ x , . . . X N ≤ x ] S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  15. Extreme Value Statistics of i.i.d Random Variables • { X 1 , X 2 , . . . , X N } = ⇒ set of N i.i.d random variables —each drawn from p ( x ) → parent distribution • M N = max ( X 1 , X 2 , . . . , X N ) • Q N ( x ) = Prob [ M N ≤ x ] = Prob [ X 1 ≤ x , X 2 ≤ x , . . . X N ≤ x ] −∞ p ( x ′ ) dx ′ � N �� x � ∞ p ( x ′ ) dx ′ � N � • Independence = ⇒ Q N ( x ) = = 1 − x S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  16. Extreme Value Statistics of i.i.d Random Variables • { X 1 , X 2 , . . . , X N } = ⇒ set of N i.i.d random variables —each drawn from p ( x ) → parent distribution • M N = max ( X 1 , X 2 , . . . , X N ) • Q N ( x ) = Prob [ M N ≤ x ] = Prob [ X 1 ≤ x , X 2 ≤ x , . . . X N ≤ x ] −∞ p ( x ′ ) dx ′ � N �� x � ∞ p ( x ′ ) dx ′ � N � • Independence = ⇒ Q N ( x ) = = 1 − x � � x − a N • Scaling Limit: N large, x large: Q N ( x ) → F b N S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  17. Extreme Value Statistics of i.i.d Random Variables • { X 1 , X 2 , . . . , X N } = ⇒ set of N i.i.d random variables —each drawn from p ( x ) → parent distribution • M N = max ( X 1 , X 2 , . . . , X N ) • Q N ( x ) = Prob [ M N ≤ x ] = Prob [ X 1 ≤ x , X 2 ≤ x , . . . X N ≤ x ] −∞ p ( x ′ ) dx ′ � N �� x � ∞ p ( x ′ ) dx ′ � N � • Independence = ⇒ Q N ( x ) = = 1 − x � � x − a N • Scaling Limit: N large, x large: Q N ( x ) → F b N a N , b N → Scale factors dependent on p ( x ) F ( z ) → Scaling function: only of 3 possible varieties (depending on the tails of p ( x )) = ⇒ LAW OF EXTREMES [Fr´ echet (1927), Fisher and Tippet (1928), Gnedenko (1943), Gumbel (1958)...] → Several applications (Climate, Finance, Oceanography.....) S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  18. Three types of Scaling Functions: Type I (GUMBEL): If p ( x ) is unbounded with faster than power law tail (e.g., exponential) F I ( z ) = exp[ − e − z ] Type II (FR´ ECHET): If p ( x ) has power law tails: p ( x ) ∼ x − ( γ +1) F II ( z ) = 0 z ≤ 0 = exp[ − z − γ ] z ≥ 0 Type III (WEIBULL): If p ( x ) is bounded: p ( x ) ∼ (1 − x ) ( γ − 1) F III ( z ) = exp[ −| z | γ ] z ≤ 0 = 1 z ≥ 0 S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  19. Three types of Scaling Functions: Type I (GUMBEL): If p ( x ) is unbounded with faster than power law tail (e.g., exponential) F I ( z ) = exp[ − e − z ] Type II (FR´ ECHET): If p ( x ) has power law tails: p ( x ) ∼ x − ( γ +1) F II ( z ) = 0 z ≤ 0 = exp[ − z − γ ] z ≥ 0 Type III (WEIBULL): If p ( x ) is bounded: p ( x ) ∼ (1 − x ) ( γ − 1) F III ( z ) = exp[ −| z | γ ] z ≤ 0 = 1 z ≥ 0 1 0.8 −−−−−−−>WEIBULL 0.6 F(z) −−−−−> GUMBEL 0.4 0.2 −−−−−> FRE’CHET 0 −5 0 5 10 15 z S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  20. Integer Partition Problem Question: How many ways can we partition an integer E → into nonincreasing summands → Ω( E ) = ? Example: E = 4 S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  21. Integer Partition Problem Question: How many ways can we partition an integer E → into nonincreasing summands → Ω( E ) = ? Example: E = 4 YOUNG DIAGRAMS 4 = 4 = 3 + 1 Ω (4) = 5 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 +1 S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  22. Integer Partition Problem Question: How many ways can we partition an integer E → into nonincreasing summands → Ω( E ) = ? Example: E = 4 YOUNG DIAGRAMS 4 = 4 = 3 + 1 Ω (4) = 5 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 +1 Classical result of Hardy-Ramanujam (1918): for large E , � � 3 E 1 / 2 � 2 Ω( E ) ∼ exp π S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  23. Number of Summands in a Partition Ω( E ) → No. of partitions of E . S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

  24. Number of Summands in a Partition Ω( E ) → No. of partitions of E . N → No. of terms (summands) in a given partition of E : N varies from one partition to another S.N. Majumdar Extreme Value Statistics, Integer Partitions and Bose Gas

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend