extrema of the einstein hilbert action for noncommutative
play

EXTREMA OF THE EINSTEIN-HILBERT ACTION FOR NONCOMMUTATIVE 4-TORI - PowerPoint PPT Presentation

EXTREMA OF THE EINSTEIN-HILBERT ACTION FOR NONCOMMUTATIVE 4-TORI Farzad Fathizadeh joint with Masoud Khalkhali 1 / 39 The Heat Kernel of a Riemannian Manifold ( M, g ) g : C ( M ) C ( M ) , K : R > 0 M M C , e


  1. EXTREMA OF THE EINSTEIN-HILBERT ACTION FOR NONCOMMUTATIVE 4-TORI Farzad Fathizadeh joint with Masoud Khalkhali 1 / 39

  2. The Heat Kernel of a Riemannian Manifold ( M, g ) △ g : C ∞ ( M ) → C ∞ ( M ) , K : R > 0 × M × M → C , � e − t △ g f � � ( x ) = K ( t, x, y ) f ( y ) dvol ( y ) . M � ∞ K ( t, x, y ) ∼ e − dist( x,y ) 2 / 4 t U i ( x, y ) t i � � ( t → 0) , (4 πt ) n/ 2 i =0 U i : N ( Diag ( M × M )) → C (geometric information), U 0 ( x, x ) = 1 ( ⇒ Weyl’s law ) , U 1 ( x, x ) = scalar curvature. 2 / 39

  3. Spectral Triples ( A , H , D ) , π : A → L ( H ) ( ∗ -representation ) , D = D ∗ : Dom ( D ) ⊂ H → H , D π ( a ) − π ( a ) D ∈ L ( H ) . Examples. � C ∞ ( M ) , L 2 ( M, S ) , D = Dirac operator � . C ∞ ( S 1 ) , L 2 ( S 1 ) , 1 ∂ � � . i ∂x 3 / 39

  4. Local Geometric Invariants of ( A , H , D ) These invariants such as scalar curvature can be computed by con- sidering small time heat kernel expansions of the form ∞ π ( a ) e − tD 2 � � a n ( a, D ) t ( n − d ) / 2 , � Trace ∼ t → 0 + n =0 where d is the spectral dimension. 4 / 39

  5. Noncommutative 4-Torus T 4 θ C ( T 4 θ ) is the universal C ∗ -algebra generated by 4 unitaries U 1 , U 2 , U 3 , U 4 , satisfying U k U ℓ = e 2 πiθ kℓ U ℓ U k , for a skew symmetric matrix θ = ( θ kℓ ) ∈ M 4 ( R ) . 5 / 39

  6. Action of T 4 = ( R / 2 π Z ) 4 on C ( T 4 θ ) R 4 ∋ s �→ α s ∈ Aut � � C ( T 4 θ ) , α s ( U m ) := e is · m U m , U m := U m 1 U m 2 U m 3 U m 4 , m j ∈ Z . 1 2 3 4 ∂ s =0 α s : C ∞ ( T 4 θ ) → C ∞ ( T 4  δ j = θ ) ,  ∂s j δ j ( U k ) := U k if k = j, := 0 if k � = j. 6 / 39

  7. Complex Structure on T 4 θ ∂ = ¯ ¯ ∂ 1 ⊕ ¯ ∂ = ∂ 1 ⊕ ∂ 2 , ∂ 2 , ∂ 1 = 1 ∂ 2 = 1 2 ( δ 1 − iδ 3 ) , 2 ( δ 2 − iδ 4 ) , ∂ 1 = 1 ∂ 2 = 1 ¯ ¯ 2 ( δ 1 + iδ 3 ) , 2 ( δ 2 + iδ 4 ) . 7 / 39

  8. Volume Form on T 4 θ ϕ 0 : C ( T 4 θ ) → C , ϕ 0 (1) := 1 , ϕ 0 ( U m 1 U m 2 U m 3 U m 4 ) := 0 , ( m 1 , m 2 , m 3 , m 4 ) � = (0 , 0 , 0 , 0) . 1 2 3 4 a, b ∈ C ( T 4 ϕ 0 ( a b ) = ϕ 0 ( b a ) , θ ) . ϕ 0 ( a ∗ a ) > 0 , a � = 0 . 8 / 39

  9. Conformal Perturbation (Connes-Tretkoff) Let h = h ∗ ∈ C ∞ ( T 4 θ ) and replace the trace ϕ 0 by ϕ : C ( T 4 θ ) → C , ϕ ( a ) := ϕ 0 ( a e − 2 h ) , a ∈ C ( T 4 θ ) . ϕ is a KMS state with the modular group σ t ( a ) = e 2 ith a e − 2 ith , a ∈ C ( T 4 θ ) , and the modular automorphism ∆( a ) := σ i ( a ) = e − 2 h a e 2 h , a ∈ C ( T 4 θ ) . a, b ∈ C ( T 4 � � ϕ ( a b ) = ϕ b ∆( a ) , θ ) . 9 / 39

  10. Perturbed Laplacian on T 4 θ d = ∂ ⊕ ¯ ∂ : H ϕ → H (1 , 0) ⊕ H (0 , 1) , ϕ ϕ △ ϕ := d ∗ d. Remark. If h = 0 then ϕ = ϕ 0 and △ ϕ 0 = δ 2 1 + δ 2 2 + δ 2 3 + δ 2 4 = ∂ ∗ ∂ (the underlying manifold is K¨ ahler). 10 / 39

  11. Explicit Formula for △ ϕ Lemma. Up to an anti-unitary equivalence △ ϕ is given by e h ¯ ∂ 1 e − h ∂ 1 e h + e h ∂ 1 e − h ¯ ∂ 1 e h + e h ¯ ∂ 2 e − h ∂ 2 e h + e h ∂ 2 e − h ¯ ∂ 2 e h , where ∂ 1 , ∂ 2 are analogues of the Dolbeault operators. 11 / 39

  12. Connes’ Pseudodifferential Calculus (1980) A smooth map ρ : R 4 → C ∞ ( T 4 θ ) is a symbol of order m ∈ Z , if for any i, j ∈ Z 4 ≥ 0 , there exists a constant c such that || ∂ j δ i � || ≤ c (1 + | ξ | ) m −| j | , � ρ ( ξ ) and if there exists a smooth map k : R 4 \{ 0 } → C ∞ ( T 4 θ ) such that ξ ∈ R 4 \ { 0 } . λ →∞ λ − m ρ ( λξ ) = k ( ξ ) , lim 12 / 39

  13. • Given a symbol ρ : R 4 → C ∞ ( T 4 θ ) , the corresponding ψ DO is: � � e − is.ξ ρ ( ξ ) α s ( a ) ds dξ, P ρ ( a ) = (2 π ) − 4 a ∈ C ∞ ( T 4 θ ) . • Differential operators: � � a ℓ ξ ℓ , a ℓ ∈ C ∞ ( T 4 a ℓ δ ℓ . ρ ( ξ ) = θ ) ⇒ P ρ = • Ψ DO’s on T 4 θ form an algebra: 1 � ℓ ! ∂ ℓ ξ ρ ( ξ ) δ ℓ ( ρ ′ ( ξ )) . σ ( P Q ) ∼ ℓ ∈ Z 4 ≥ 0 13 / 39

  14. • A symbol ρ : R 4 → C ∞ ( T 4 θ ) of order m is elliptic if ρ ( ξ ) is invertible for any ξ � = 0 , and if there exists a constant c such that || ρ ( ξ ) − 1 || ≤ c (1 + | ξ | ) − m , when | ξ | is sufficiently large. • Example of an elliptic operator: △ ϕ = e h ¯ ∂ 1 e − h ∂ 1 e h + e h ∂ 1 e − h ¯ ∂ 1 e h + e h ¯ ∂ 2 e − h ∂ 2 e h + e h ∂ 2 e − h ¯ ∂ 2 e h . 14 / 39

  15. Symbol of △ ϕ Lemma. The symbol of △ ϕ is equal to a 2 ( ξ ) + a 1 ( ξ ) + a 0 ( ξ ) , where 4 4 � � a 2 ( ξ ) = e h ξ 2 δ i ( e h ) ξ i , i , a 1 ( ξ ) = i =1 i =1 4 i ( e h ) − δ i ( e h ) e − h δ i ( e h ) � δ 2 � � a 0 ( ξ ) = . i =1 15 / 39

  16. Mellin Transform and Asymptotic Expansions � ∞ 1 e − t △ ϕ t s dt △ − s = t , ϕ Γ( s ) 0 ∞ Trace ( a e − t △ ϕ ) ∼ t → 0 + t − 2 � B n ( a, △ ϕ ) t n/ 2 . n =0 Approximate e − t △ 2 ϕ by pseudodifferential operators: 1 � e − tλ ( △ ϕ − λ ) − 1 dλ, e − t △ ϕ = 2 πi C B λ ( △ ϕ − λ ) ≈ 1 , σ ( B λ ) = b 0 + b 1 + b 2 + · · · . 16 / 39

  17. Analogue of Weyl’s Law for T 4 θ Theorem. For the eigenvalue counting function N ( λ ) = # { λ j ≤ λ } of the Laplacian △ ϕ on T 4 θ , we have N ( λ ) ∼ π 2 ϕ 0 ( e − 2 h ) λ 2 ( λ → ∞ ) . 2 Corollary. √ 2 πϕ 0 ( e − 2 h ) 1 / 2 j 1 / 2 λ j ∼ ( j → ∞ ) , = π 2 � (1 + △ ϕ ) − 2 � 2 ϕ 0 ( e − 2 h ) . Tr ω 17 / 39

  18. Dixmier Trace Tr ω : L 1 , ∞ ( H ) → C For any T ∈ K ( H ) , let µ 1 ( T ) ≥ µ 2 ( T ) ≥ · · · ≥ 0 1 be the sequence of eigenvalues of | T | = ( T ∗ T ) 2 . N � L 1 , ∞ ( H ) := � � • T ∈ K ( H ); µ n ( T ) = O ( log N ) . n =1 N 1 � � � 0 ≤ T ∈ L 1 , ∞ ( H ) . • Tr ω ( T ) := lim µ n ( T ) , log N ω n =1 18 / 39

  19. Noncommutative Residue (Wodzicki) Let P be a classical ψ DO acting on smooth sections of a vector bundle E over a closed smooth manifold M of dimension n . • Definition: � Res ( P ) = (2 π ) − n tr ( ρ − n ( x, ξ )) dx dξ, S ∗ M where S ∗ M ⊂ T ∗ M is the unit cosphere bundle on M and ρ − n is the component of order − n of the complete symbol of P . • Theorem: Res is the unique trace on Ψ( M, E ) . 19 / 39

  20. A Noncommutative Residue for T 4 θ Classical symbols: ρ : R 4 → C ∞ ( T 4 θ ) ∞ � ρ ( ξ ) ∼ ρ m − i ( ξ ) ( ξ → ∞ ) , i =0 ρ m − i ( t ξ ) = t m − i ρ m − i ( ξ ) , ξ ∈ R 4 . t > 0 , Theorem. The linear functional � � � Res ( P ρ ) := S 3 ϕ 0 ρ − 4 ( ξ ) dξ is the unique trace on classical pseudodifferential operators on T 4 θ . 20 / 39

  21. Analogue of Connes’ Trace Theorem for T 4 θ Theorem. For any classical symbol ρ of order − 4 on T 4 θ , we have P ρ ∈ L 1 , ∞ ( H 0 ) , and Tr ω ( P ρ ) = 1 4 Res ( P ρ ) . Remark. Weyl’s law is a special case of this theorem: let 1 ρ ( ξ ) = (1 + | ξ | 2 ) 2 . 21 / 39

  22. Scalar Curvature for T 4 θ It is the unique element R ∈ C ∞ ( T 4 θ ) such that a ∈ C ∞ ( T 4 Res s =1 ζ a ( s ) = ϕ 0 ( a R ) , θ ) , ζ a ( s ) := Trace ( a △ − s ϕ ) , ℜ ( s ) ≫ 0 . 22 / 39

  23. Connes’ Rearrangement Lemma For any m = ( m 0 , m 1 , . . . , m ℓ ) ∈ Z ℓ +1 > 0 , ρ 1 , . . . , ρ ℓ ∈ C ∞ ( T 4 θ ) : � ∞ ℓ u | m |− 2 ρ j ( e h u + 1) − m j du � ( e h u + 1) m 0 0 1 ℓ = e − ( | m |− 1) h F m (∆ , . . . , ∆) � � � ρ j , 1 where � ∞ j ℓ x | m |− 2 � − m j � � � F m ( u 1 , . . . , u ℓ ) = x u k + 1 dx. ( x + 1) m 0 0 1 1 23 / 39

  24. Examples of F m F (3 , 4) ( u ) = 60 u 3 log( u ) + ( u − 1)( u ( u (3( u − 9) u − 47) + 13) − 2) 6( u − 1) 6 u 3 F (2 , 2 , 1) ( u, v ) = ( v − 1) ( ( u − 1)( uv − 1)( u ( u ( v − 1)+ v ) − 1) − u 2 ( v − 1)(2 uv + u − 3) log( uv ) ) +( u (2 v − 3)+1)( uv − ( u − 1) 3 u 2 ( v − 1) 2 ( uv − 1) 2 24 / 39

  25. Identities Relating δ i ( e h ) and δ i ( h ) e − h δ i ( e h ) = g 1 (∆) � � δ i ( h ) , e − h δ 2 i ( e h ) = g 1 (∆) δ 2 � � � � i ( h ) + 2 g 2 (∆ (1) , ∆ (2) ) δ i ( h ) δ i ( h ) , where g 1 ( u ) = u − 1 log u , g 2 ( u, v ) = u ( v − 1) log( u ) − ( u − 1) log( v ) log( u ) log( v )(log( u ) + log( v )) . 25 / 39

  26. Final Formula for the Scalar Curvature of T 4 θ Theorem. 4 4 R = e − h k ( ∇ ) � � + e − h H ( ∇ , ∇ ) � δ i ( h ) 2 � � δ 2 � i ( h ) , i =1 i =1 where ∇ ( a ) := 1 a ∈ C ( T 4 2 log ∆( a ) = [ − h, a ] , θ ) , k ( s ) = 1 − e − s , 2 s H ( s, t ) = − e − s − t (( − e s − 3) s ( e t − 1) + ( e s − 1) (3 e t + 1) t ) . 4 s t ( s + t ) 26 / 39

  27. Recalling the Scalar Curvature of T 2 θ Theorem. (Connes-Moscovici; Khalkhali-F.) Up to an overall factor ℑ ( τ ) , the scalar curvature of T 2 − π of θ is equal to 1 ( h 2 ) + 2 τ 1 δ 1 δ 2 ( h 2 ( h 2 ) + | τ | 2 δ 2 δ 2 � � R 1 ( ∇ ) 2 ) δ 1 ( h 2 ) 2 + | τ | 2 δ 2 ( h δ 1 ( h 2 ) , δ 2 ( h � 2 ) 2 + ℜ ( τ ) �� � + R 2 ( ∇ , ∇ ) 2 ) ℑ ( τ ) [ δ 1 ( h 2 ) , δ 2 ( h � � + i W ( ∇ , ∇ ) 2 )] . 27 / 39

  28. The One Variable Function for T 4 θ 4 + s 2 12 − s 3 48 + s 4 s 5 k ( s ) = 1 2 − s s 6 � � 240 − 1440 + O . 3.0 2.5 2.0 1.5 1.0 0.5 � 2 2 4 28 / 39

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend