expos de soutenance pour le titre de docteur de l cole
play

Expos de soutenance pour le titre de Docteur de lcole Polytechnique - PowerPoint PPT Presentation

Expos de soutenance pour le titre de Docteur de lcole Polytechnique Spcialit: Physique Iurii Timrov 27 March 2013, cole Polytechnique 1/57 Outline 1. Introduction 1.1 Motivation 1.2 Material: Bismuth 1.3 State of the art


  1. Exposé de soutenance pour le titre de Docteur de l’École Polytechnique Spécialité: Physique Iurii Timrov 27 March 2013, École Polytechnique 1/57

  2. Outline 1. Introduction 1.1 Motivation 1.2 Material: Bismuth 1.3 State of the art methods 2. Results 2.1 High-energy response: new approach for EELS 2.2 Low-energy response: free-carrier response 3. Conclusions 2/57

  3. Outline 1. Introduction 1.1 Motivation 1.2 Material: Bismuth 1.3 State of the art methods 2. Results 2.1 High-energy response: new approach for EELS 2.2 Low-energy response: free-carrier response 3. Conclusions 3/57

  4. Motivation How to understand the nature of materials? Perturb them and see what happens! 4/57

  5. Motivation Optics: q → 0, ω → 0 EELS: q � = 0, ω � = 0 ω 2 Drude model: ǫ ( ω ) = 1 − p Loss function − Im [ ǫ − 1 ( q , ω )] ω ( ω + i γ ) 5/57

  6. Motivation Ab initio description of the full charge-carrier response of bismuth to external perturbations: low-energy and high-energy response. 6/57

  7. Why do we need a new method for EELS? 1. Bridging the valence-loss and the core-loss EELS. It is computationally ex- pensive for state-of-the- art methods to describe EEL spectra of complex systems in the energy range up to 100 eV. C. Wehenkel et al., Solid State Comm. 15 , 555 (1974) 7/57

  8. Why do we need a new method for EELS? 2. Calculation of EEL spectra of large systems (hundreds of atoms). Example: Calculation of surface plasmons ⇒ Simulation of the surface is needed = Figure: View of a 5-layer slab model of a surface, as used in periodic calculation. ⇓ Large number of atoms ⇓ Computationally demanding task for state-of-the-art methods D. Scholl and J. Steckel, “DFT: A practical introduction” (2009). 8/57

  9. Low-energy response: photoexcited bismuth Photoexcitation of Bi ⇐ ⇒ Pump-probe THz expt. (L. Perfetti, J. Faure.) Theoretical model is needed in order to explain the evolution of the Drude plasma frequency ω p after the photoexcitation of Bi. 9/57

  10. Outline 1. Introduction 1.1 Motivation 1.2 Material: Bismuth 1.3 State of the art methods 2. Results 2.1 High-energy response: new approach for EELS 2.2 Low-energy response: free-carrier response 3. Conclusions 10/57

  11. Material: Semimetal Bismuth . Issi, Aus. J. Phys. 32 , 585 (1979) J.-P M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82 , 3045 (2010). 11/57

  12. Crystal and Electronic Structure A7 rhombohedral structure: Peierls distortion of sc lattice Semimetallicity is due to the Peierls distor- tion: Overlap between valence and conduc- tion bands. The Fermi surface consists of 1 hole pocket and 3 electron pockets. Y. Liu et al., Phys. Rev. B 52 , 1566 (1995). . Issi, Aus. J. Phys. 32 , 585 (1979) J.-P 12/57

  13. Crystal and Electronic Structure A7 rhombohedral structure: Peierls distortion of sc lattice Semimetallicity is due to the Peierls distor- tion: Overlap between valence and conduc- tion bands. The Fermi surface consists of 1 hole pocket and 3 electron pockets. Y. Liu et al., Phys. Rev. B 52 , 1566 (1995). . Issi, Aus. J. Phys. 32 , 585 (1979) J.-P 12/57

  14. Crystal and Electronic Structure A7 rhombohedral structure: Peierls distortion of sc lattice Semimetallicity is due to the Peierls distor- tion: Overlap between valence and conduc- tion bands. The Fermi surface consists of 1 hole pocket and 3 electron pockets. Y. Liu et al., Phys. Rev. B 52 , 1566 (1995). . Issi, Aus. J. Phys. 32 , 585 (1979) J.-P 13/57

  15. Spin-orbit coupling (SOC) Spin-orbit coupling is a coupling of electron’s spin S with its orbital motion L . The SOC Hamiltonian reads: H SOC ∝ ∇ V ( L · σ ) , � σ 0 � where V is the potential, and σ are Pauli spin-matrices: S = � . 2 0 σ material SOC-assisted split- ting of levels at Γ (eV) 0.04 Si 0.3 GaAs 0.8 InSb 0.3 As 0.6 Sb 1.0 Pb Bi 1.5 In bismuth the spin-orbit coupling is very strong! A. Dal Corso, J. Phys. Condens. Matter 20 , 445202 (2008). 14/57

  16. Spin-orbit coupling (SOC) Spin-orbit coupling is a coupling of electron’s spin S with its orbital motion L . The SOC Hamiltonian reads: H SOC ∝ ∇ V ( L · σ ) , � σ 0 � where V is the potential, and σ are Pauli spin-matrices: S = � . 2 0 σ material SOC-assisted split- ting of levels at Γ (eV) 0.04 Si 0.3 GaAs 0.8 InSb 0.3 As 0.6 Sb 1.0 Pb Bi 1.5 In bismuth the spin-orbit coupling is very strong! A. Dal Corso, J. Phys. Condens. Matter 20 , 445202 (2008). 14/57

  17. Kohn-Sham band structure of bismuth X. Gonze et al., Phys. Rev. B 41 , 11827 (1990) A. B. Shick et al., Phys. Rev. B 60 , 15484 (1999) I. Timrov, J. Faure, N. Vast, L. Perfetti et al., Phys. Rev. B 85 , 155139 (2012) 15/57

  18. Kohn-Sham band structure of bismuth X. Gonze et al., Phys. Rev. B 41 , 11827 (1990) A. B. Shick et al., Phys. Rev. B 60 , 15484 (1999) I. Timrov, J. Faure, N. Vast, L. Perfetti et al., Phys. Rev. B 85 , 155139 (2012) 16/57

  19. Outline 1. Introduction 1.1 Motivation 1.2 Material: Bismuth 1.3 State of the art methods 2. Results 2.1 High-energy response: new approach for EELS 2.2 Low-energy response: free-carrier response 3. Conclusions 17/57

  20. Density Functional Theory Ground-state: DFT The Kohn-Sham equation: − 1 � � 2 ∇ 2 + V KS ( r ) ϕ i ( r ) = ε i ϕ i ( r ) . The Kohn-Sham potential V KS ( r ) : | r − r ′ | d r ′ + δ E xc [ ρ ( r )] ρ ( r ′ ) � + V ext ( r ) . δρ ( r ) The charge-density: occ | ϕ i ( r ) | 2 . ρ ( r ) = � i The quantum Liouville equation: [ ˆ ρ ] = 0 . H KS , ˆ Hohenberg and Kohn, Phys. Rev. (1964) Kohn and Sham, Phys. Rev. (1965) 18/57

  21. Historical note 19/57

  22. Time-Dependent Density Functional Theory Ground-state: DFT Excited-state: TDDFT The Kohn-Sham equation: The TD Kohn-Sham equation: − 1 − 1 � � � � ϕ i ( r , t ) = i ∂ 2 ∇ 2 + V KS ( r ) 2 ∇ 2 + V KS ( r , t ) ϕ i ( r ) = ε i ϕ i ( r ) . ∂ t ϕ i ( r , t ) . The TD Kohn-Sham potential V KS ( r , t ) : The Kohn-Sham potential V KS ( r ) : | r − r ′ | d r ′ + δ E xc [ ρ ( r )] ρ ( r ′ ) | r − r ′ | d r ′ + δ E xc [ ρ ( r , t )] ρ ( r ′ , t ) � � + V ext ( r ) . + V ext ( r , t ) , δρ ( r ) δρ ( r , t ) The charge-density: The TD charge-density: occ occ | ϕ i ( r , t ) | 2 . | ϕ i ( r ) | 2 . ρ ( r ) = � ρ ( r , t ) = � i i The quantum Liouville equation: The TD quantum Liouville equation: ρ ( t ) ] = i ∂ [ ˆ ρ ] = 0 . [ ˆ H KS , ˆ H KS ( t ) , ˆ ∂ t ˆ ρ ( t ) . Hohenberg and Kohn, Phys. Rev. (1964) Runge and Gross, PRL (1984) Kohn and Sham, Phys. Rev. (1965) Onida, Reining, Rubio, RMP (2002) 20/57

  23. Time-Dependent Density Functional Theory Ground-state: DFT Excited-state: TDDFT The Kohn-Sham equation: The TD Kohn-Sham equation: − 1 − 1 � � � � ϕ i ( r , t ) = i ∂ 2 ∇ 2 + V KS ( r ) 2 ∇ 2 + V KS ( r , t ) ϕ i ( r ) = ε i ϕ i ( r ) . ∂ t ϕ i ( r , t ) . The TD Kohn-Sham potential V KS ( r , t ) : The Kohn-Sham potential V KS ( r ) : | r − r ′ | d r ′ + δ E xc [ ρ ( r )] ρ ( r ′ ) | r − r ′ | d r ′ + δ E xc [ ρ ( r , t )] ρ ( r ′ , t ) � � + V ext ( r ) . + V ext ( r , t ) , δρ ( r ) δρ ( r , t ) The charge-density: The TD charge-density: occ occ | ϕ i ( r , t ) | 2 . | ϕ i ( r ) | 2 . ρ ( r ) = � ρ ( r , t ) = � i i The quantum Liouville equation: The TD quantum Liouville equation: ρ ( t ) ] = i ∂ [ ˆ ρ ] = 0 . [ ˆ H KS , ˆ H KS ( t ) , ˆ ∂ t ˆ ρ ( t ) . Hohenberg and Kohn, Phys. Rev. (1964) Runge and Gross, PRL (1984) Kohn and Sham, Phys. Rev. (1965) Onida, Reining, Rubio, RMP (2002) 20/57

  24. Fluctuation-dissipation theorem Optical absorption Perturbation: electric field ⇓ Polarization of the dipole: d ( ω ) = χ ( ω ) E ext ( ω ) χ is the polarization-polarization correlation function Im ǫ ( ω ) ∝ S ( ω ) S ( ω ) = 2 π ω Im χ ( ω ) S is the oscillator strength ◮ Im ǫ : Measured experimentally ◮ S : Fluctuation of polarization ◮ Im χ : Dissipation of energy 21/57

  25. Two implementations of linear-response TDDFPT Optical absorption spectra of finite systems Liouville-Lanczos approach Conventional TDDFT approach Definition: Independent-transition polarizability χ 0 � � ˜ ext ( r , ω ) ˆ V ′ ρ ′ ( ω ) χ ( ω ) ≡ Tr ( f v − f c ) ϕ c ( r ) ϕ ∗ v ( r ) ϕ v ( r ′ ) ϕ c ( r ′ ) χ 0 ( ω ) = � ω − ( ε c − ε v ) + i η v , c ˆ ρ ′ ( ω ) =? Quantum Liouville equation: ρ ( t ) ] = i ∂ [ ˆ H KS ( t ) , ˆ ∂ t ˆ ρ ( t ) Linearization + Fourier transform: ρ 0 ] ( ω − ˆ ρ ′ ( ω ) = [˜ V ′ L ) · ˆ ext ( ω ) , ˆ ρ ′ ≡ [ˆ H 0 ρ ′ ] + [ˆ ρ 0 ] ˆ L · ˆ KS , ˆ V HXC , ˆ χ ( ω ) = � ˜ L ) − 1 [˜ ρ 0 ] � Dyson-like equation: ext ( ω ) | ( ω − ˆ V ′ V ′ ext ( ω ) , ˆ χ = χ 0 + χ 0 ( v Coul + f xc ) χ ⇓ Use of Lanczos recursion method Onida, Reining, Rubio, RMP (2002) Rocca, Gebauer, Saad, Baroni, JCP (2008) 22/57

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend