exploring type ii flux vacua susy non susy and non
play

Exploring Type II Flux Vacua: SUSY, Non-SUSY, and Non-geometric - PDF document

Exploring Type II Flux Vacua: SUSY, Non-SUSY, and Non-geometric University of Wisconsin, Madison September 2005 W. Taylor (MIT) hep-th/0505160 (w/ O. De Wolfe, A. Giryavets, S. Kachru) hep-th/0508133 (w/ J. Shelton, B. Wecht) 1 Outline 1.


  1. Exploring Type II Flux Vacua: SUSY, Non-SUSY, and Non-geometric University of Wisconsin, Madison September 2005 W. Taylor (MIT) hep-th/0505160 (w/ O. De Wolfe, A. Giryavets, S. Kachru) hep-th/0508133 (w/ J. Shelton, B. Wecht) 1

  2. Outline 1. Introduction/Motivation 2. IIB vacua 3. IIA vacua 4. Synthesis: non-geometric compactifications 5. Summary + open questions 2

  3. 1. Introduction/Motivation Type IIA/IIB string compactification: X 6 − → M 10 M 4 SUSY, no fluxes: X 6 = Calabi-Yau, M 4 = R 4 Generic Calabi-Yau: Moduli Example: ( T 2 ) 3 in type IIB Complex structure: τ K¨ ahler modulus: U = B xy + i × volume Axiodilaton: S = χ + ie − φ Moduli space: manifold of SUSY vacua 3

  4. Moduli stabilization Turn on integrally quantized (topological) fluxes F ( p ) H abc , a 1 ··· a p ⇒ 4D potential � √ g e − 2 φ | H | 2 + | F | 2 + · · · � � V ∼ M 6 is Moduli dependent Problems: A) Runaway moduli ( V ∼ H 2 / volume 2 ) B) Tadpoles � e.g., A 4 ∧ F 3 ∧ H 3 in IIB Chern-Simons term ⇒ ∇ 2 6 A 4 ∼ F 3 ∧ H 3 One solution: Orientifold planes T O p < 0 , D − charge( O p ) < 0 4

  5. Fluxes + O-planes → moduli stabilization Goal: Study “landscape” of string vacua Motivations: • May connect to phenomenology • May connect to cosmology • May shed light on foundational aspects of string theory “Anthropic”/environmental selection issues of limited practical consequence without a better global picture of range of possible vacua, some dynamical principle/definition of string theory Summary of talk: • We know of many flux vacua • There probably exist many many more 5

  6. 2. Type IIB flux vacua Consider integral (topological) IIB fluxes: H abc , F abc Two ways to study: (Giddings-Kachru-Polchinski, . . . ) A) 10D SUGRA S → 4D potential V (moduli) B) Superpotential W for 4D SUGRA (Gukov-Vafa-Witten) Begin with A: � √ g � � e − 2 φ ( R + ( ∂φ ) 2 − | H | 2 ) − � | F ( p ) | 2 S = p − A 4 ∧ H 3 ∧ F 3 + δ (6) D3 , O3 ( T D3 , O3 − A 4 ) A 4 tadpole cancellation: � N D 3 + F 3 ∧ H 3 = N O 3 Varying zero-modes (moduli) gives S → V (moduli) where zero-modes of φ, B, g, A p − 1 are moduli 6

  7. B) Analysis using 4D superpotential Potential can be written V = e K ( DWDW − 3 | W | 2 ) where DW = ∂W + ( ∂K ) W and � W = G ∧ Ω (GVW) (depends only on CS moduli, axiodilaton S ) “no-scale” dependence on K¨ ahler moduli: D K WD K W = 3 | W | 2 gives V = e K ( D CS WD CS W ) SUSY solutions: DW = W = 0 7

  8. Summary of IIB vacuum analysis to date • Equations of motion ∂ moduli V = 0 , DW = 0 ⇒ some moduli stabilized • Potential can be written V ∼ | iG (3) − ∗ G (3) | 2 + · · · vol 2 where G (3) = F (3) − SH (3) . iG (3) = ∗ G (3) ⇔ ISD. • Generically stabilizes complex structure moduli, S • SUSY DW = 0 solutions ISD, V = 0 , M 4 = R 4 • K¨ ahler moduli only stabilized nonperturbatively (Denef/Douglas/Florea/Grassi/Kachru) • Tadpole constraint + ISD ⇒ finite # of inequivalent solutions • Statistical analysis of IIB vacua begun (Douglas, Ashok/Douglas, Denef/Douglas, DGKT, . . . ) 8

  9. 3. Type IIA flux vacua Can have fluxes H 3 , F 6 , F 4 , F 2 , F 0 (massive IIA) Use Orientifold 6-plane to cancel A 7 tadpole F 0 H 3 + N D 6 = N O 6 Both analysis methods again possible. A) Explicit computation of 4D potential V V ∼ e 2 φ H 2 vol 7 / 3 + e 4 φ F 2 F 2 O 6 vol 2 + e 4 φ 4 vol − e 3 φ 0 vol 3 / 2 + · · · Note: volume dependence allows K¨ ahler stabilization B) Superpotential formalism (Grimm/Louis) � W Q = Ω c ∧ H 3 J c ∧ F 4 − F 0 � � W K = J c ∧ J c ∧ J c + · · · 6 9

  10. Summary of IIA vacuum analysis • K¨ ahler moduli generically stabilized • Some models: all moduli stabilized (DGKT example: T 6 / Z 2 3 ) • Other models: unstabilized axions — needed to cancel anomaly on branes (Camara/Font/Iba˜ nez) • F 4 unconstrained by tadpole ⇒ ∞ # of vacua • No no-scale structure: for SUSY DW = 0 vacua W = 0 ⇒ Minkowski, W � = 0 ⇒ AdS 4 • Exist controlled families of vacua, g → 0 , volume → ∞ • non-SUSY vacua exist in controlled regime SUSY breaking from flux sign change 10

  11. Simple example of IIA vacua: T 6 / Z 2 3 Consider ( T 2 ) 3 with τ = e 2 πi/ 3 Mod out by T : ( z 1 , z 2 , z 3 ) → ( α 2 z 1 , α 2 z 2 , α 2 z 3 ) Q : ( z 1 , z 2 , z 3 ) → ( α 2 z 1 + 1 + α , α 4 z 2 + 1 + α , z 3 + 1 + α ) 3 3 3 Singular limit of CY, χ = 24 , 9 Z 3 singularities h 2 , 1 = 0 , h 1 , 1 = 12 3 K¨ ahler moduli from tori, 9 from singularities Orientifold: fixed plane of σ : z i → − ¯ z i Holomorphic 3-form i 1 √ Ω = 3 1 / 4 dz 1 ∧ dz 2 ∧ dz 3 = 2 ( α 0 + i β 0 ) 11

  12. Moduli of T 6 / Z 2 3 model: A (3) = ξ α 0 , φ (axion , dilaton) 3 ds 2 = � γ i dz i d ¯ z i i =1 3 β i dz i ∧ d ¯ � z i B 2 = i =1 Metric, B -field components γ i β i ⇒ 3 K¨ ahler moduli Remaining 9 K¨ ahler moduli from blow-up modes. Fluxes (quantized): H bg = − p β 0 3 e 1 dz 2 ∧ d ¯ z 2 ∧ dz 3 ∧ d ¯ z 3 + cyclic F bg � � = constant 4 √ Tadpole condition m 0 p = − 2(2 π α ′ ) No tadpole constraint on e i . 12

  13. Can explicitly solve EOM to get B = A (3) = 0 Potential ( v i = constant × γ i , φ ) 3 √ 2 p 2 e 2 φ i ) e 4 φ e 4 φ e 3 φ V = 1 � e 2 i v 2 vol 3 + m 2 vol 2 + ( vol + 2 2 m 0 p 0 vol 3 / 2 i =1 (vol = constant × γ 1 γ 2 γ 3 ) Solving � 1 � 1 / 6 � 3 � � 1 e 1 e 2 e 3 ds 2 = z i , � | e i | dz i d ¯ � � 5 � � 9 κ m 0 � � i =1 � 5 � 1 / 4 e φ = 3 κ 4 | p | . 12 | m 0 e 1 e 2 e 3 | Scaling of solutions for large e i ∼ E : vol ∼ E 3 / 2 e φ ∼ E − 3 / 4 Λ ∼ E − 9 / 2 HR ∼ E − 1 / 2 So solutions are parametrically under control 13

  14. Further comments on solutions • SUSY solutions: all e i have same sign other signs: non-SUSY controlled solutions ∼ skew-whiffing (Duff/Nillson/Pope) • Can check B -mode stability SUSY solutions: all modes stable non-SUSY solutions: BF-allowed tachyons • Can stabilize blow-up modes with additional F 4 fluxes can choose in regime where blow-up modes ≪ R • Number of vacua with R ≤ R ∗ goes as ( R ∗ ) 4 cutoff dominated • Expect similar results for other models some axions not stabilized, fix anomalies (CFI) 14

  15. 4. Synthesis: non-geometric vacua Upshot so far: IIA, IIB vacua seem very different But mirror symmetry: IIA ↔ IIB?? Reconciliation: non-geometric fluxes Example: Consider T 3 with B xy = Nz ⇒ H xyz = N flux T-duality T x : “geometric flux” f x yz ds 2 = ( dx + f x yz zdy ) 2 + dy 2 + dz 2 (twisted tori: Scherk/Schwarz, Kaloper/Myers, . . . ; SU(3) structure: Hitchin, Gurrieri/Louis/Micu/Waldram, . . . ) T y : “non-geometric flux” Q xy z Locally geometric T 2 bundle over T 1 , duality twist in BC’s 1 ds 2 = dx 2 + dy 2 � + dz 2 � 1 + N 2 z 2 Nz B xy = 1 + N 2 z 2 . (Dabholkar/Hull, Hellerman/McGreevy/Williams, Flourney/Wecht/Williams, . . . ) T z : more non-geometric flux R xyz ; not yet understood 15

  16. T-duality rules for NS-NS fluxes T a T b T c → f a → Q ab → R abc H abc ← ← ← bc c Like T-duality rules for R-R fluxes T x F xα 1 ··· α p ← → F α 1 ··· α p Generalize Buscher rules to include 0-forms Example: T 6 = ( T 2 ) 3 in IIA, IIB • Duality ⇒ superpotential, constraints • Demonstrates consistency of NG fluxes moduli IIB IIA τ CS K¨ ahler S axiodilaton axiodilaton U K¨ ahler CS Previously known flux superpotentials IIB: W = P (3) ( τ ) + SP (3) ( τ ) 1 2 (geometric, coefficients F, H ) IIA: W = P (3) ( τ ) + SP (1) ( τ ) + UP (1) ( τ ) 1 2 3 (w/ geometric flux; Villadoro/Zwirner, Camara/Font/Ibanez ) 16

  17. Claim: full IIA/IIB superpotential is W = P (3) ( τ ) + SP (3) ( τ ) + UP (3) ( τ ) 1 2 3 coefficients: NS-NS fluxes H abc , f a bc , Q ab c , R abc Explicit construction (O6 on α, β, γ ) Term IIA flux IIB flux ¯ ¯ 1 F αiβjγk F ijk ¯ ¯ τ F αiβj F ijγ ¯ ¯ τ 2 F αi F iβγ ¯ τ 3 F (0) F αβγ ¯ ¯ S H ijk H ijk ¯ Q αβ U H αβk k ¯ f α Sτ H αjk jk f j βγ Q αj k , Q iβ kα , f i βk , f α k , Q βγ Uτ α ¯ Q αβ Sτ 2 H iβγ k Q γi γ , Q ij γ , Q γi β , Q ij Uτ 2 β , Q iβ Q iβ k k ¯ Sτ 3 R αβγ H αβγ Uτ 3 R ijγ Q ij γ Black: already known; Blue: T-dual of black Green: rotation of blue; Purple: T-dual of Green 17

  18. Use T-duality to find (Bianchi/tadpole) constraints � NS-NS constraints ( ∼ dH = 0 ) H x [ ab f x ¯ cd ] = 0 f a x [ b f x cd ] + ¯ H x [ bc Q ax d ] = 0 H x [ cd ] R [ ab ] x = 0 [ cd ] − 4 f [ a x [ c Q b ] x d ] + ¯ Q [ ab ] f x x xd R bc ] x = 0 x Q c ] x + f [ a Q [ ab d x R cd ] x = 0 . Q [ ab � R-R constraints ( ∼ ( d + H ) F = 0 ) F [ abc ¯ ¯ H def ] = 0 F x [ abc f x ¯ de ] − ¯ F [ ab ¯ H cde ] = 0 F xy [ abc Q xy ¯ d ] − 3 ¯ F x [ ab f x cd ] − 2 ¯ F [ a ¯ H bcd ] = 0 F xyz [ abc ] R xyz − 9 ¯ ¯ F xy [ ab Q xy c ] bc ] + 6 F (0) ¯ − 18 ¯ F x [ a f x H [ abc ] = 0 F xyz [ ab ] R xyz + 6 ¯ ¯ F xy [ a Q xy b ] − 6 ¯ F x f x [ ab ] = 0 F xyza R xyz − 3 ¯ ¯ F xy Q xy = 0 a F xyz R xyz = 0 . ¯ 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend