exploring the stratified shortest paths problem
play

Exploring the Stratified Shortest-Paths Problem Timothy G. Griffin - PowerPoint PPT Presentation

Exploring the Stratified Shortest-Paths Problem Timothy G. Griffin timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK University of Stirling SICSA Workshop 17 June 2010 T. Griffin (cl.cam.ac.uk) Exploring the


  1. Exploring the Stratified Shortest-Paths Problem Timothy G. Griffin timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK University of Stirling SICSA Workshop 17 June 2010 T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 1 / 33

  2. This Talk Motivation There is a long history of algebraic approaches to solving path problems in graphs. Question : Can BGP be cast in a way that falls within this tradition? Sources [Gri10] The Stratified Shortest-Paths Problem COMSNETS (January, 2010) TGG [SG10] Routing in Equilibrium Math. Theory of Networks and Systems (July, 2010) Jo˜ ao Lu´ ıs Sobrinho and TGG T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 2 / 33

  3. Shortest paths example, sp = ( N ∞ , min , +) The adjacency matrix 2 1 2 3 4 5  ∞ ∞  2 1 6 1 2 5 4 2 ∞ 5 ∞ 4 2     A = 1 5 ∞ 4 3 3 1 1 3 3 5     6 ∞ 4 ∞ ∞ 4   ∞ 4 3 ∞ ∞ 5 6 4 4 T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 3 / 33

  4. Shortest paths example, continued The routing matrix 2 1 2 3 4 5 2 5 4  0 2 1 5 4  1 2 0 3 7 4 2 1 1 3 3 5     R = 1 3 0 4 3 3     5 7 4 0 7 4   6 4 4 4 3 7 0 5 4 Matrix R solves this global Bold arrows indicate the optimality problem: shortest-path tree rooted at 1. R ( i , j ) = p ∈ P ( i , j ) w ( p ) , min where P ( i , j ) is the set of all paths from i to j . T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 4 / 33

  5. Semirings A few examples name S ⊕ , ⊗ 0 1 possible routing use N ∞ sp min + ∞ 0 minimum-weight routing N ∞ max min 0 ∞ greatest-capacity routing bw rel [ 0 , 1 ] max × 0 1 most-reliable routing { 0 , 1 } max min 0 1 usable-path routing use 2 W ∪ ∩ {} W shared link attributes? 2 W ∩ ∪ W {} shared path attributes? Path problems focus on global optimality � A ∗ ( i , j ) = w ( p ) p ∈ P ( i , j ) T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 5 / 33

  6. Recomended Reading T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 6 / 33

  7. What algebraic properties are associated with global optimality? Distributivity L.D : a ⊗ ( b ⊕ c ) = ( a ⊗ b ) ⊕ ( a ⊗ c ) , R.D : ( a ⊕ b ) ⊗ c = ( a ⊗ c ) ⊕ ( b ⊗ c ) . What is this in sp = ( N ∞ , min , +) ? L . DIST : a + ( b min c ) = ( a + b ) min ( a + c ) , R . DIST : ( a min b ) + c = ( a + c ) min ( b + c ) . T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 7 / 33

  8. (Left) Local Optimality Say that L is a left-locally optimal solution when L = ( A ⊗ L ) ⊕ I . That is, for i � = j we have � � L ( i , j ) = A ( i , q ) ⊗ L ( q , j ) = w ( i , q ) ⊗ L ( q , j ) , q ∈ V ( i , q ) ∈ E In other words, L ( i , j ) is the best possible value given the values L ( q , j ) , for all out-neighbors q of source i . T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 8 / 33

  9. (Right) Local Optimality Say that R is a left-locally optimal solution when R = ( R ⊗ A ) ⊕ I . That is, for i � = j we have � � R ( i , j ) = R ( i , q ) ⊗ A ( q , j ) = R ( i , q ) ⊗ w ( q , j ) , q ∈ V ( q , j ) ∈ E In other words, R ( i , j ) is the best possible value given the values R ( q , j ) , for all in-neighbors q of destination j . T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 9 / 33

  10. With and Without Distributivity With For (well behaved) Semirings, the three optimality problems are essentially the same — locally optimal solutions are globally optimal solutions. A ∗ = L = R Without Suppose that we drop distributivity and A ∗ , L , R exist. It may be the case they they are all distinct. T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 10 / 33

  11. A World Without Distributivity Global Optimality This has been studied, for example [LT91b,LT91a] in the context of circuit layout. See Chapter 5 of [BT10]. This approach does not play well with (loop-free) hop-by-hop forwarding (need tunnels!) Left Local Optimality At a very high level, this is the type of problem that BGP attempts to solve!! Right Local Optimality This approach does not play well with (loop-free) hop-by-hop forwarding (need tunnels!) T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 11 / 33

  12. Example 1 ( 5 , 1 ) ( 5 , 1 ) ( 10 , 5 ) 2 ( 5 , 4 ) ( 5 , 1 ) ( 5 , 1 ) 4 3 5 ( 10 , 1 ) ( bandwidth , distance ) with lexicographic order (bandwidth first). T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 12 / 33

  13. Left-locally optimal paths to node 2 1 2 4 3 5 T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 13 / 33

  14. Right-locally optimal paths to node 2 1 1 , 3 , 4 → 2 3 → 2 4 → 2 2 5 → 2 4 3 → 2 3 5 → 2 5 4 → 2 T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 14 / 33

  15. Functions on arcs From ( S , ⊕ , ⊗ , 0 , 1 ) to ( S , ⊕ , F , 0 , 1 ) Replace ⊗ with F ⊆ S → S , Replace L.D : a ⊗ ( b ⊕ c ) = ( a ⊗ b ) ⊕ ( a ⊗ c ) with D : f ( b ⊕ c ) = f ( b ) ⊕ f ( c ) Path weight is now w ( p ) = g ( v 0 , v 1 ) ( g ( v 1 , v 2 ) · · · ( g ( v k − 1 , v k ) ( 1 ) · · · )) = ( g ( v 0 , v 1 ) ◦ g ( v 1 , v 2 ) ◦ · · · ◦ g ( v k − 1 , v k ) )( 1 ) T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 15 / 33

  16. What accounts for loss of distributivity? Algebras can be constructed from component algebras, and we must be careful. EIGRP is an example [GS03]. Link weights may be a function of path weight. From w ( v 0 , v 1 , · · · , v k ) = w ( v 0 , v 1 ) ⊗ w ( v 1 , · · · , v k ) to w ( v 0 , v 1 , · · · , v k ) = g ( v 0 , v 1 ) ( w ( v 1 , · · · , v k )) ⊗ w ( v 1 , · · · , v k ) . This makes distributivity harder to maintain (especially given the kinds of g ’s natural in a routing context). T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 16 / 33

  17. What are the conditions needed to guarantee existence of local optima? For a non-distributed structure S = ( S , ⊕ , F , 0 , 1 ) , can be used to find local optima when the following property holds. Strictly Inflationary S . INFL : ∀ a , b ∈ S : a � = 0 = ⇒ a < b ⊗ a where a ≤ b means a = a ⊕ b . T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 17 / 33

  18. Useful properties ( S , ⊕ , F , 0 , 1 ) property definition D ∀ a , b ∈ S , f ∈ F : f ( a ⊕ b ) = f ( a ) ⊕ f ( b ) ∀ a ∈ S , f ∈ F : a ≤ f ( a ) INFL S . INFL ∀ a ∈ S , F ∈ F : a � = 0 = ⇒ a < f ( a ) K 0 ∀ a , b ∈ S , f ∈ F : f ( a ) = f ( b ) = ⇒ ( a = b ∨ f ( a ) = 0 ) C 0 ∀ a , b ∈ S , f ∈ F : f ( a ) � = f ( b ) = ⇒ ( f ( a ) = 0 ∨ f ( b ) = 0 ) T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 18 / 33

  19. Stratified Shortest-Paths Metrics Metrics ( s , d ) or ∞ s � = ∞ is a stratum level in { 0 , 1 , 2 , . . . , m − 1 } , d is a “shortest-paths” distance, Routing metrics are compared lexicographically ( s 1 , d 1 ) < ( s 2 , d 2 ) ⇐ ⇒ ( s 1 < s 2 ) ∨ ( s 1 = s 2 ∧ d 1 < d 2 ) T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 19 / 33

  20. Stratified Shortest-Paths Policies Policy has form ( f , d ) ( f , d )( s , d ′ ) = � f ( s ) , d + d ′ � ( f , d )( ∞ ) = ∞ where � ∞ ( if s = ∞ ) � s , t � = ( s , t ) ( otherwise ) T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 20 / 33

  21. Constraint on Policies ( f , d ) Either f is inflationary and 0 < d , or f is strictly inflationary and 0 ≤ d . Why? ⇒ S . INFL ( S � ( S . INFL ( S ) ∨ ( INFL ( S ) ∧ S . INFL ( T ))) = × 0 T ) . T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 21 / 33

  22. All Inflationary Policy Functions for Three Strata 0 1 2 D K ∞ C ∞ 0 1 2 D K ∞ C ∞ a 0 1 2 m 2 1 2 ⋆ ⋆ b 0 1 ∞ ⋆ ⋆ n 2 1 ∞ ⋆ 0 2 2 2 2 2 c ⋆ o ⋆ ⋆ d 0 2 ∞ ⋆ ⋆ p 2 2 ∞ ⋆ ⋆ ∞ ∞ e 0 2 ⋆ q 2 2 ⋆ f 0 ∞ ∞ ⋆ ⋆ ⋆ r 2 ∞ ∞ ⋆ ⋆ ⋆ g 1 1 2 ⋆ s ∞ 1 2 ⋆ h 1 1 ∞ ⋆ ⋆ t ∞ 1 ∞ ⋆ ⋆ i 1 2 2 u ∞ 2 2 ⋆ ⋆ j 1 2 ∞ ⋆ ⋆ v ∞ 2 ∞ ⋆ ⋆ k 1 ∞ 2 w ∞ ∞ 2 ⋆ ⋆ ⋆ l 1 ∞ ∞ ⋆ ⋆ ⋆ x ∞ ∞ ∞ ⋆ ⋆ ⋆ T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 22 / 33

  23. Almost shortest paths 0 1 2 D K ∞ interpretation a 0 1 2 ⋆ ⋆ + 0 j 1 2 ∞ ⋆ ⋆ + 1 r 2 ∞ ∞ ⋆ ⋆ + 2 x ∞ ∞ ∞ + 3 ⋆ ⋆ b 0 1 ∞ filter 2 ⋆ ⋆ e 0 ∞ 2 ⋆ filter 1 f 0 ∞ ∞ filter 1 , 2 ⋆ ⋆ s ∞ 1 2 ⋆ filter 0 ∞ 1 ∞ filter 0 , 2 t ⋆ w ∞ ∞ 2 ⋆ filter 0 , 1 T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 23 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend