explore high energy universe
play

Explore High Energy Universe with IceCube observation Extreme - PowerPoint PPT Presentation

Explore High Energy Universe with IceCube observation Extreme Astrophysics Chiba University Shigeru Yoshida 2009/9/5 Science of astrophysics Detector size Origin of cosmic rays Hadronic vs. leptonic signatures Supernovae


  1. Explore High Energy Universe with IceCube ν observation Extreme Astrophysics Chiba University Shigeru Yoshida 2009/9/5

  2. Science of ν astrophysics Detector size Origin of cosmic rays � Hadronic vs. leptonic signatures � Supernovae Limitation at high energies: Oscillations Fast decreasing Limitation at low Dark matter (neutralinos) fluxes E -2 , E -3 energies: -Short muon range Astrophysical neutrinos -Low light yield GZK, Topological Defects - 40 K (in water) MeV GeV TeV PeV EeV Detector density Other physics: monopoles, etc... 2009/9/5

  3. enveloping black hole black hole radiation 2009/9/5

  4. 2009/9/5

  5. Connections to γ and CR p γ (p,n) π 2 γ Fermi observations !! μ ν e ν ν Cosmic Ray observations! 2009/9/5

  6. Cosmic Ray and Neutrino Sources Candidate sources Cosmic rays (accelerators): Cosmic ray related: – SN remnants – Active Galactic Nuclei – Gamma Ray Bursts Other: – Dark Matter – Exotics knee 1 part m -2 yr -1 Guaranteed sources (known targets): • Atmospheric neutrinos (from π and K decay) Ankle • Galactic plane: CR interacting with ISM, 1 part km -2 yr -1 concentrated on the disk • GZK (cosmogenic neutrinos) 2009/9/5 � Δ + � n π + (p π 0 ) γ � p γ 6

  7. Neutrino Fluxes Overview MeV energy neutrino astrophysics High energy neutrino astronomy: Small fluxes, Need large detectors, Note wide energy range 2009/9/5 7

  8. Extremely-high Energy Universe 宇宙が産み出す ( 素 ) 粒子 のエネルギーには上限があるのか? Sky @ E = 5x10 10 GeV 2009/9/5 10 12 GeV

  9. Extremely-high Energy Universe 宇宙が産み出す ( 素 ) 粒子 のエネルギーには上限があるのか? CMB 10 -12 GeV ± ± ± γ → π → μ + ν → + ν p e ' s 2 . 7 K 10 11 GeV “GZK” ν Greisen – Zatsepin – Kuzmin Effect 2009/9/5 10 12 GeV

  10. Why GZK ν ? γ γ → → π π ± ± + + p p X X 超銀河団 超銀河団 2 2 . . 7 7 K K GZK GZK cutoff cutoff → → μ μ ± ± + + ν ν → → ± ± + + ν ν e e ' ' s s γ・陽子 γ・陽子 Non-Observable から見た から見た Space by γ and 宇宙の死角 宇宙の死角 Cosmic Nuclei γ + γ + γ + γ 2.7K γ 2.7K γ 2.7K e e e γ γ γ + γ + γ + γ 2.7K 2.7K 2.7K + + + + + + e + e + e + + e + e + e e - e - e - - - - SDSS SDSS Distant, younger universe 遠く・若い宇宙 遠く・若い宇宙 銀河直径 銀河直径 超銀河団直径 超銀河団直径 1 0 万光年 1 0 万光年 (Our Galaxy) 10 (Super Cluster)

  11. High-Energy Neutrino Astrophysics Particle Astrophysics • 宇宙線の起源 様々な領域の • エネルギー収支 クロスオーバー • 深宇宙探査 ν 非加速器物理 “新”物理現象探索 • 暗黒物質 • ローレンツ不変性の破れ • 相対論的モノポール • ブラックホール蒸発 • ニュートリノ核子相互作用 2009/9/5

  12. やっている人間もクロスオーバー IceCube IceCube 以前に従事したプロジェクト BaBar, DELPHI, SSC, SNO STAR, OPERA HiRes, MAGIC,…., 宇宙線屋 高エネ屋 原子核屋 天文屋 2009/9/5

  13. IceCube status • Total of 59 strings and 118 IceTop tanks � over two thirds complete! • Completion with 86 strings: January 2011 • Detector is taking data during construction phase. 2009/9/5 A. Karle, UW ‐ Madison 13

  14. IceCube 2006-2007: 13 strings deployed IceTop 2007 configuration - 22 strings Air shower detector - 52 surface tanks 80 pairs of ice 2005-2006: 8 strings Cherenkov tanks Threshold ~ 300 TeV 2004-2005 : 1 string 1450m InIce AMANDA-II Planned 80 strings of 60 19 strings optical modules each 677 modules 17 m between modules AMANDA now 125 m string separation operating as part 2450m of IceCube 2007/08: added 18 strings Fujihara Seminar 2009 14 Completion by 2011.

  15. The IceCube Collaboration Germany: Sweden: DESY ‐ Zeuthen USA: Uppsala Universitet Universität Mainz Stockholm Universitet Universität Dortmund Bartol Research Institute, Delaware Universität Wuppertal University of California, Berkeley UK: Humboldt Universität University of California, Irvine MPI Heidelberg Oxford University Pennsylvania State University RWTH Aachen Clark ‐ Atlanta University Netherlands: Ohio State University Georgia Tech Utrecht University University of Maryland Belgium: Japan: University of Alabama, Tuscaloosa Switzerland: Université Libre de Bruxelles University of Wisconsin ‐ Madison Chiba University EPFL Vrije Universiteit Brussel University of Wisconsin ‐ River Falls Universiteit Gent Lawrence Berkeley National Lab. Université de Mons ‐ Hainaut University of Kansas Southern University and A&M College, Baton Rouge University of Alaska, Anchorage New Zealand: University of Canterbury 33 institutions, ~250 members 2009/9/5 http://icecube.wisc.edu

  16. Our Events 2009/9/5

  17. 2009/9/5 18

  18. Neutrino Effective Areas Area at 100 TeV (1TeV) AMANDA ‐ II: 3m 2 (0.005) IceCube 86: 100m 2 (0.3) (trigger) Deep Core lowers threshold from 100 GeV (trigger) to 10 GeV. Effective area for ν μ Strong rise with energy: – – Increase of muon range with energy up to PeV 2009/9/5

  19. Neutrino Effective Areas (trigger) (trigger) Dark Matter • ν • GZK ν from CMB Point Source • Diffuse AGN ν • Monopole • Atomospheric ν • Blackhole evap. 2009/9/5

  20. Neutrino Fluxes and Limits 2009/9/5

  21. Atmospheric neutrinos Atmospheric ν 2009/9/5

  22. Atmospheric ν • IceCube 22 string analysis • 4492 neutrino events at high purity (>95%) 2009/9/5

  23. Very High Energy (TeV-PeV) ν Astrophysical sources: Diffuse, Point sources, GRBs, AGN 2009/9/5

  24. Search for point sources - 40-string(6month) all-sky results Preliminary 175.5 days livetime, 17777 events: 6796 up-going, 10981 down-going 2009/9/5 26

  25. Dark Matter Search for indirect dark matter: Energy range: 10 GeV to few TeV 2009/9/5

  26. Search for dark matter, example: in sun � neutrino flux at Earth WIMPs • annihilating in the gravity well of the Sun q q • indirect detection ~ ~ χ χ → → → ν L l l μ ± W , Z , H 2009/9/5

  27. Dark Matter search: neutrinos from WIMP annihilation in the sun q q ~ ~ χ χ → → → ν L l l μ ± W , Z , H IceCube 22 limits AMANDA 7 year limits (PRL 102, 201302 (2009)) (this conference) IceCube 86 with Deep Core Sensitivity (prel.) � Deep core enhancement under construction will greatly � Deep core enhancement under construction will greatly enhance sensitivity. enhance sensitivity. 2009/9/5

  28. IceCube Deep Core � Add 6 strings at small spacing, all high quantum � Add 6 strings at small spacing, all high quantum efficiency PMT efficiency PMT � Lower energy threshold: � Lower energy threshold: Open window between 10 and 100 GeV Open window between 10 and 100 GeV � High background rejection using surrounding � High background rejection using surrounding µ IceCube strings as Veto: IceCube strings as Veto: µ 2009/9/5

  29. EHE (EeV and higher) Astrophysical sources: 100 PeV to 10 EeV AGN, Cosmogenic neutrinos (GZK) IC22 Event rates for Flux: Engel, Seckel, Stanev, 2001) (Factor of 10 higher still allowed by current limits, including IceCube) • IceCube ‐ 22strings, through going, 240 days: ~0.1 events/yr • IC86, total: o(0.5) event/yr 10 x 10km 2 radio array: • 2009/9/5 o(10) events/yr

  30. region A: -250 < CoGZ < -50 m and CoGZ > 50 m region B: CoGZ < -250 m and -50 < CoGZ < 50m (Signal MC) (Data) (Background MC) (Background MC) (Signal MC) (Data) 2009/9/5

  31. Extremely-High Energy ν limits with 241 days observation in 2007 We will have more observation time with more than twice bigger volume Stats will be increased by x5 before 2011 33

  32. Extremely-High Energy ν limits with 5 year full IceCube 34

  33. The radio detection The Askaryan effect Conditions for coherent radio emission 1. Net exccess charge 2. λ obs > shower dimensions 1 N ~ N γ e λ 2 1 Coherence!! ( ) Δ 2 W ~ N q λ 2 e 2009/9/5

  34. Calibration of the Askaryan effect @SLAC 10 9 x 28.5 GeV e 2x10 10 e + e - in the target ice Anita instruments 2009/9/5 Gorham et al hep-ex/0611008

  35. Askaryan radio array at the South Pole • Large Radio array of short strings, • Depth: 200m • Spacing: ~0.5 to 1km • Coverage: 100km 2 • Low cost (shallow holes, antennas) • Large enough to reliably detect GZK neutrino flux: > 250km 3 viewed target volume • O(10) events per year 3 D observation for good event reconstruction and background rejection of interactions km deep in 2009/9/5 the ice sheet.

  36. Askaryan Radio Array IceCube Extension Construction starts at 2011 - Science 2014- Log( φ ν (E)E [km -2 yr -1 sr -1 ]) IceCube 3yrs ARA 3yrs Log(E ν [eV]) 2009/9/5

  37. Explore Particle Physics ν Flux measurement = Ω ⊗ σ ⊗ φ − σ Rate V T N A (E ) exp( N X) ν A Interaction Absorption Detector+ Geometry Unknown FLUX 2009/9/5

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend