exploiting half wits smarter storage for low power devices
play

Exploiting Half-Wits: Smarter Storage for Low-Power Devices - PowerPoint PPT Presentation

1 0 0 1 0 Exploiting Half-Wits: Smarter Storage for Low-Power Devices Mastooreh (Negin) Salajegheh, Yue Wang Kevin Fu, Andrew Jiang, Erik Learned-Miller Supported in part by a Sloan Research Fellowship and NSF CCF-0747415, CNS-0627476,


  1. 1 0 0 1 0 Exploiting Half-Wits: Smarter Storage for Low-Power Devices Mastooreh (Negin) Salajegheh, Yue Wang Kevin Fu, Andrew Jiang, Erik Learned-Miller Supported in part by a Sloan Research Fellowship and NSF CCF-0747415, CNS-0627476, CNS-0627529, CNS-0845874, CNS-0923313, ECCS-0802107. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. Friday, March 4, 2011

  2. figure: treehugger.com Mastooreh Salajegheh, USENIX FAST ’11 2 Friday, March 4, 2011

  3. figure: treehugger.com Mastooreh Salajegheh, USENIX FAST ’11 2 Friday, March 4, 2011

  4. Storage on Embedded Devices Mastooreh Salajegheh, USENIX FAST ’11 3 Friday, March 4, 2011

  5. Storage on Embedded Devices >$10 billion Mastooreh Salajegheh, USENIX FAST ’11 3 Friday, March 4, 2011

  6. Storage on Embedded Devices >$10 billion Mastooreh Salajegheh, USENIX FAST ’11 3 Friday, March 4, 2011

  7. Storage on Embedded Devices >$10 billion Mastooreh Salajegheh, USENIX FAST ’11 4 Friday, March 4, 2011

  8. On-chip Flash Mastooreh Salajegheh, USENIX FAST ’11 5 Friday, March 4, 2011

  9. On-chip Flash Microcontroller with 8KB Embedded Flash Memory Mastooreh Salajegheh, USENIX FAST ’11 5 Friday, March 4, 2011

  10. On-chip Flash 2.2 V vs. 4.5 V Microcontroller with 8KB Embedded Flash Memory Mastooreh Salajegheh, USENIX FAST ’11 5 Friday, March 4, 2011

  11. Ideal CPU Flash 2.2 V 4.5 V Energy ∝ Workload Mastooreh Salajegheh, USENIX FAST ’11 6 Friday, March 4, 2011

  12. Ideal Actual CPU CPU Flash Flash 2.2 V 4.5 V 4.5 V Energy ∝ Worst case Energy ∝ Workload Mastooreh Salajegheh, USENIX FAST ’11 6 Friday, March 4, 2011

  13. Goal of this work • To reduce the wasted energy consumption for embedded storage. Mastooreh Salajegheh, USENIX FAST ’11 7 Friday, March 4, 2011

  14. Contribution • Software for using flash memory at low voltage - Quantifying the impact on reliability - Measuring the energy savings Mastooreh Salajegheh, USENIX FAST ’11 8 Friday, March 4, 2011

  15. State of the Art • Pick the highest voltage...Excessive power Mastooreh Salajegheh, USENIX FAST ’11 9 Friday, March 4, 2011

  16. State of the Art • Pick the highest voltage...Excessive power • Add hardware...$$ Mastooreh Salajegheh, USENIX FAST ’11 9 Friday, March 4, 2011

  17. State of the Art • Pick the highest voltage...Excessive power • Add hardware...$$ • Don’t use flash memory...Ugh! [Sample:08] I can’t remember a thing Mastooreh Salajegheh, USENIX FAST ’11 9 Friday, March 4, 2011

  18. State of the Art • Pick the highest voltage...Excessive power • Add hardware...$$ • Don’t use flash memory...Ugh! [Sample:08] I can’t Voltage 4 remember a thing 2 0 [Ransford: ASPLOS11] 0 50 100 200 300 Time (ms) Mastooreh Salajegheh, USENIX FAST ’11 9 Friday, March 4, 2011

  19. Our Approach Savings: Low-voltage Write to flash memory at low voltage. Mastooreh Salajegheh, USENIX FAST ’11 10 Friday, March 4, 2011

  20. Our Approach Savings: Cost: Low-voltage Errors Write to flash How hard is it memory at low to correct the voltage. errors? Mastooreh Salajegheh, USENIX FAST ’11 10 Friday, March 4, 2011

  21. Write once bits (Wits) [Rivest:82] Mastooreh Salajegheh, USENIX FAST ’11 11 figure: http://arcweb.archives.gov Friday, March 4, 2011

  22. Partial Failure at Low Voltage • Example: 1111 1111 Initialized: Mastooreh Salajegheh, USENIX FAST ’11 12 Friday, March 4, 2011

  23. Partial Failure at Low Voltage • Example: 1111 1111 Initialized: 1111 1100 Input: Mastooreh Salajegheh, USENIX FAST ’11 12 Friday, March 4, 2011

  24. Partial Failure at Low Voltage • Example: 1111 1111 Initialized: 1111 1100 Input: Mastooreh Salajegheh, USENIX FAST ’11 12 Friday, March 4, 2011

  25. Partial Failure at Low Voltage • Example: 1111 1111 Initialized: 1111 1100 Input: 1111 1101 Result: Mastooreh Salajegheh, USENIX FAST ’11 12 Friday, March 4, 2011

  26. Partial Failure at Low Voltage • Example: 1111 1111 Initialized: 1111 1100 Input: Error 1111 1101 Result: Mastooreh Salajegheh, USENIX FAST ’11 12 Friday, March 4, 2011

  27. Transitions at low voltage Z 1 1 • 1 → 0 might fail with P ≥ 0. • 1 → 1 never fails (P=0). 0 0 [Klove:95] Mastooreh Salajegheh, USENIX FAST ’11 13 Friday, March 4, 2011

  28. What might influence the error rate Mastooreh Salajegheh, USENIX FAST ’11 14 Friday, March 4, 2011

  29. What might influence the error rate ✓ Operating voltage level Mastooreh Salajegheh, USENIX FAST ’11 14 Friday, March 4, 2011

  30. What might influence the error rate ✓ Operating voltage level ✓ Hamming weight of data Mastooreh Salajegheh, USENIX FAST ’11 14 Friday, March 4, 2011

  31. What might influence the error rate ✓ Operating voltage level ✓ Hamming weight of data ✓ Wear-out history Mastooreh Salajegheh, USENIX FAST ’11 14 Friday, March 4, 2011

  32. What might influence the error rate ✓ Operating voltage level ✓ Hamming weight of data ✓ Wear-out history - Neighbor cells Mastooreh Salajegheh, USENIX FAST ’11 14 Friday, March 4, 2011

  33. What might influence the error rate ✓ Operating voltage level ✓ Hamming weight of data ✓ Wear-out history - Neighbor cells - Permutation of 0s Mastooreh Salajegheh, USENIX FAST ’11 14 Friday, March 4, 2011

  34. Mastooreh Salajegheh, USENIX FAST ’11 15 Friday, March 4, 2011

  35. Test Platform Mastooreh Salajegheh, USENIX FAST ’11 15 Friday, March 4, 2011

  36. Test Platform Monitor Mastooreh Salajegheh, USENIX FAST ’11 15 Friday, March 4, 2011

  37. Voltage Supply Test Platform Monitor Mastooreh Salajegheh, USENIX FAST ’11 15 Friday, March 4, 2011

  38. JTAG Voltage Supply Test Platform Monitor Mastooreh Salajegheh, USENIX FAST ’11 15 Friday, March 4, 2011

  39. 100 M 80 Error rate (%) C U - a 60 40 20 0 1.80 1.82 1.84 1.86 1.88 1.90 1.92 Operating Voltage (V) Mastooreh Salajegheh, USENIX FAST ’11 16 Friday, March 4, 2011

  40. 100 MCU-A M 80 Error rate (%) C s U p i h c - a o w e h T 60 l t e d f o o m e m a s 40 20 0 1.80 1.82 1.84 1.86 1.88 1.90 1.92 Operating Voltage (V) Mastooreh Salajegheh, USENIX FAST ’11 17 Friday, March 4, 2011

  41. 100 MCU-A M 80 Error rate (%) C U - a 60 MCU-B 40 20 MCU-b 0 1.80 1.82 1.84 1.86 1.88 1.90 1.92 Operating Voltage (V) Mastooreh Salajegheh, USENIX FAST ’11 18 Friday, March 4, 2011

  42. Data Hamming Weight 100 Error rate(%) 50 0 0 1 2 3 4 5 6 7 8 Hamming weight Mastooreh Salajegheh, USENIX FAST ’11 19 Friday, March 4, 2011

  43. Data Hamming Weight 100 Error rate(%) The heavier the better. 50 0 0 1 2 3 4 5 6 7 8 Hamming weight Mastooreh Salajegheh, USENIX FAST ’11 19 Friday, March 4, 2011

  44. Voltage = 1.850 V Error (%) 100 12 rows (memory length) 80 60 40 20 0 128 bits (memory width) Mastooreh Salajegheh, USENIX FAST ’11 20 Friday, March 4, 2011

  45. Voltage = 1.850 V Error (%) 100 12 rows (memory length) 80 60 More often used 40 20 0 128 bits (memory width) Mastooreh Salajegheh, USENIX FAST ’11 20 Friday, March 4, 2011

  46. Accumulative Behavior Mastooreh Salajegheh, USENIX FAST ’11 figure: steynian.wordpress.com 21 Friday, March 4, 2011

  47. Design of a Low-voltage Storage Mastooreh Salajegheh, USENIX FAST ’11 22 Friday, March 4, 2011

  48. Modeling Flash Memory • A set of cells n • Cell state: < c 1 , ..., c n > • c i ∈ { 0 , 1 } • Initial state: ∀ i, c i = 1 • Update: set a subset of to 0 < c 1 , ..., c n > • Once then a write cannot c i = 0 c i ← 1 • Write Once Bits: Wits Mastooreh Salajegheh, USENIX FAST ’11 23 Friday, March 4, 2011

  49. Modeling Flash Memory At low voltage: • might fail and remains . [Pavan:97] c i ← 0 1 c i • There might not be enough charge stored in a cell to represent a 0: Half-Wits 1 0 0 1 0 Mastooreh Salajegheh, USENIX FAST ’11 24 Friday, March 4, 2011

  50. Design Goals Minimize: • Energy consumption • Error rate • Delay Mastooreh Salajegheh, USENIX FAST ’11 25 Friday, March 4, 2011

  51. Proposed Techniques 1. In-place writes 2. Multiple-place writes 3. ReedSolomon-Berger Codes Mastooreh Salajegheh, USENIX FAST ’11 26 Friday, March 4, 2011

  52. Negative Logic } Cell Initialization: 1 Mastooreh Salajegheh, USENIX FAST ’11 27 Friday, March 4, 2011

  53. Negative Logic Charge } Cell ☺ Initialization: 1 Written: 0 Mastooreh Salajegheh, USENIX FAST ’11 27 Friday, March 4, 2011

  54. 1. In-place writes • Repeatedly attempt a write to the same location. Mastooreh Salajegheh, USENIX FAST ’11 28 Friday, March 4, 2011

  55. 1. In-place writes • Repeatedly attempt a write to the same location. • Example: One bit over time 1 Mastooreh Salajegheh, USENIX FAST ’11 28 Friday, March 4, 2011

  56. 1. In-place writes • Repeatedly attempt a write to the same location. • Example: One bit over time 1 → 0 1 Mastooreh Salajegheh, USENIX FAST ’11 28 Friday, March 4, 2011

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend