experimental qubits e2 transition
play

Experimental Qubits: E2 transition Interaction Hamiltonian Electric - PowerPoint PPT Presentation

INTERACTING IONS IN THE LAB Experimental Qubits: E2 transition Interaction Hamiltonian Electric quadrupole ( ) H L = 1 |1> D 5/2 R + e i + e i 2 Ba + , Ca + need to keep phase stable, Sr + , Yb + optical


  1. INTERACTING IONS IN THE LAB

  2. Experimental Qubits: E2 transition Interaction Hamiltonian Electric quadrupole ( ) H L = 1 |1> D 5/2  Ω R σ + e i φ + σ − e − i φ  2 Ba + , Ca + need to keep phase φ stable, Sr + , Yb + optical radiation: ω ≈ 5 × 10 14 Hz S 1/2 |0>

  3. Qubits: E2 transition Example Electric quadrupole Ca + |1> D 5/2 Ba + , Ca + Δ ω ω ≈ 10 − 14 Sr + , Yb + 729 nm S 1/2 |0> Ch. Roos et al. PRL 83 , 4713 (1999)

  4. Elementary quantum logic using E2 transition Example K. Mølmer and A. Sørensen, PRL 82 , 1835 (1999). Schindler et al., NJP 15, 123012 (2013)

  5. Factoring using Shor‘s Algorithm Th. Monz et al., Science 351 , 1068 (2016)

  6. Qubits: Hyperfine or Zeeman transition Raman transition:    k 1 − k 2 ≠ 0 9 Be + , 25 Mg + , 43 Ca + Ω R ∝ Ω 1 Ω 2 87 Sr + , 111 Cd + , 137 Ba + , 171 Yb + Δ |1> |0>

  7. Qubits: Hyperfine or Zeeman transition Example Be + 9 Be + , 25 Mg + , 43 Ca + 87 Sr + , 111 Cd + , 137 Ba + , 171 Yb + |1> |0> C. Monroe et al., PRL 75 (1995)

  8. Qubits: Hyperfine or Zeeman transition Example: High fidelity gates Be + Doppler cooling, repumping, detection Gate: Raman transitions J.P. Gaebler et al., PRL 117 (2016)

  9. Trapped Ion Quantum Computer Example S. Debnath et al. Nature 536 , 63 (2016).

  10. Qubits: E2 transition Example Electric quadrupole |1> D 5/2 Ba + , Ca + Sr + , Yb + S 1/2 |0> Precise coherent operations demand: high phase stability, • high absolute stability of centre frequency • high amplitude stability • (need good beam quality, pointing stability, diffraction)

  11. Qubits: Hyperfine or Zeeman transition Example 9 Be + , 25 Mg + , 43 Ca + 87 Sr + , 111 Cd + , 137 Ba + , 171 Yb + |1> |0> Precise coherent operations demand: high phase stability, • high absolute stability of centre frequency • high amplitude stability • (need good beam quality, pointing stability, diffraction) Avoid spontaneous scattering •

  12. Quantum Information with Trapped Ions Slide prepared by Dave Wineland

  13. Ma gnetic G radient I nduced C oupling

  14. MAGIC: Spin-Motion Coupling despite η ≈ 0 |1 > � z |0 > � z PRL 87 (2001). In “ Laser Physics at the Limit” , Springer, 2002. quant-ph/0111158. Adv. At. Mol. Opt. Phys. 49 (2003). quant-ph/0305129

  15. MAGIC: Spin-Motion Coupling despite η ≈ 0 |1 > � |0 > � B PRL 87 (2001). In “ Laser Physics at the Limit” , Springer, 2002. quant-ph/0111158. Adv. At. Mol. Opt. Phys. 49 (2003). quant-ph/0305129

  16. MAGIC: Spin-Motion Coupling despite η ≈ 0 η eff = d z / Δ z |1 > � |0 > � B PRL 87 (2001). In “ Laser Physics at the Limit” , Springer, 2002. quant-ph/0111158. Adv. At. Mol. Opt. Phys. 49 (2003). quant-ph/0305129

  17. Coupling internal and motional states Semi-classical illustration Spin-dependent force (magnetic gradient) p p p p 0 0 |1> ⊗ z z 0 |0>

  18. Coupling internal and motional states Semi-classical illustration. QM calculation Spin-dependent force (magnetic gradient) p p p p 0 0 d z |1>  k p 0 ⊗ ⊗ d z z 0 zz z z 0 0 |0> d z = −  ∂ z ω Equilibrium shifted by m ν 2 PRL 87 (2001). Adv. At. Mol. Opt.Phys. 49 , 295 (2003).

  19. Coupling internal and motional states Semi-classical illustration. QM calculation Spin-dependent force (magnetic gradient) p p p p 0 0 d z |1>  k p 0 ⊗ ⊗ d z z 0 z zz z 0 0 |0> d z = −  ∂ z ω Equilibrium shifted by m ν 2 Effective Lamb-Dicke parameter: κ ≡ d z ∂ z ω η ' ≡ η − i κ where = z 0 ν ( ) z 0 ⎡ ⎤ H I ∝ σ + exp i η 'a + η '* a + ⎦ + h.c. ⎣ PRL 87 (2001). Adv. At. Mol. Opt. Phys. 49 , 295 (2003).

  20. Coupling and Addressing Trapped Ions RF AOMs Pinholes Sum-Frequency EOMs Doublers

  21. Coupling and Addressing Trapped Ions RF AOMs Pinholes Sum-Frequency EOMs Doublers

  22. Coupling and Addressing Trapped Ions RF

  23. Trapped Ions for QIS Coupling and Addressing Qubits using RF-waves Technical challenges • Stability of frequency ✔ • Stability of phase ✔ • Stability of intensity ✔ ? • Ambient fields • Shuttling ✔ Fundamental problems • Spontaneous scattering ✔ • Addressing errors ✔ • Thermal excitation ✔ ?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend