exit time moments and eigenvalue estimates
play

Exit Time Moments and Eigenvalue Estimates Je ff rey Langford - PowerPoint PPT Presentation

Exit Time Moments and Eigenvalue Estimates Je ff rey Langford Bucknell University Lewisburg, PA April 3, 2020 Talk based on the papers: a. D. Colladay, J. J. Langford, and P. McDonald. Comparison results, exit time moments, and eigenvalues on


  1. Exit Time Moments and Eigenvalue Estimates Je ff rey Langford Bucknell University Lewisburg, PA April 3, 2020 Talk based on the papers: a. D. Colladay, J. J. Langford, and P. McDonald. Comparison results, exit time moments, and eigenvalues on Riemannian manifolds with a lower Ricci curvature bound. J. Geom. Anal., 28(4):3906–3927, 2018. b. E. B. Dryden, J. J. Langford, and P. McDonald. Exit time moments and eigenvalue estimates. Bull. Lond. Math. Soc., 49(3):480–490, 2017. Je ff rey Langford Bucknell University Lewisburg, PA Exit Time Moments and Eigenvalue Estimates

  2. Motivation We recall torsional rigidity . For Ω ✓ R n a bounded C ∞ domain, let u 1 solve � ∆ u 1 = 1 in Ω , u = 0 on ∂ Ω . Put Z T 1 ( Ω ) = u 1 dx (torsional rigidity) . Ω Interpreting probabilistically, we let X t denote Brownian motion in R n , P x denote the probability measure charging Brownian paths starting at x 2 R n , and τ = inf { t � 0 : X t / 2 Ω } denote the first exit time of X t from Ω . Then Z u 1 ( x ) = E x [ τ ] E x [ τ ] dx . and T 1 ( Ω ) = Ω P´ olya’s inequality gives an estimate of the principal Dirichlet eigenvalue in terms of T 1 ( Ω ): | Ω | λ 1 ( Ω )  T 1 ( Ω ) . Definition and Motivating Question With Ω ✓ R n as above, put Z E x [ τ n ] dx T n ( Ω ) = (exit time moments) . Ω Our motivating question: How can we (sharply) estimate Dirichlet eigenvalues { λ n ( Ω ) } in terms of the exit time moments { T n ( Ω ) } ? Je ff rey Langford Bucknell University Lewisburg, PA Exit Time Moments and Eigenvalue Estimates

  3. Background Let Ω ✓ R n denote a bounded C ∞ domain. Again, X t denote Brownian motion in R n , P x denote the probability measure charging Brownian paths starting at x 2 R n , and 2 Ω } denote the first exit time of X t from Ω . Then u ( x , t ) = P x ( τ > t ) solves τ = inf { t � 0 : X t / ∂ u = ∆ u in Ω ⇥ (0 , 1 ) , ∂ t u ( x , 0) = 1 in Ω , x → σ u ( x , t ) lim = 0 for all ( σ , t ) 2 ∂ Ω ⇥ (0 , 1 ) . Write Z H ( t ) = u ( x , t ) dx (heat content) . Ω Write { λ n ( Ω ) } for the eigenvalues of the Dirichlet Laplacian: � ∆ u = λ u in Ω u = 0 on ∂ Ω . Denote a λ = || Proj E λ 1 || 2 . If spec ∗ ( Ω ) denotes the set of Dirichlet eigenvalues (omitting multiplicity) with a λ > 0, then X a 2 λ e − λ t . H ( t ) = λ ∈ spec ∗ ( Ω ) Thus, X a 2 Vol( Ω ) = (volume partition) . λ λ ∈ spec ∗ ( Ω ) Je ff rey Langford Bucknell University Lewisburg, PA Exit Time Moments and Eigenvalue Estimates

  4. Background Cont. The Mellin transform of the heat content takes the form of a Dirichlet series ✓ 1 ◆ s X a 2 ζ ( s ) = . λ λ λ ∈ spec ∗ ( Ω ) The moment spectrum is related to the Dirichlet spectrum via ζ ( k ) = T k ( Ω ) . k ! We have that spec ∗ ( Ω ), the volume partition { a λ } λ ∈ spec ∗ ( Ω ) , and heat content are all determined by the exit time moments { T n ( Ω ) } . For example, ✓ T n ( Ω ) ◆ 1 1 n λ 1 ( Ω ) = lim n ! n →∞ and n →∞ λ 1 ( Ω ) n T n ( Ω ) a λ 1 = lim . n ! Je ff rey Langford Bucknell University Lewisburg, PA Exit Time Moments and Eigenvalue Estimates

  5. Main Results Theorem 1 (CLM, DLM) Say Ω ✓ R n is a bounded C ∞ domain. Then ✓ 1 ◆ 2 k − 1 T 2 k − 1 ( Ω ) X a 2 (2 k � 1)! � ν ν ν ∈ spec ∗ ( Ω ) ν < λ n ( Ω ) λ n ( Ω )  . ✓ 1 ◆ 2 k T 2 k ( Ω ) X a 2 � ν (2 k )! ν ν ∈ spec ∗ ( Ω ) ν < λ n ( Ω ) Moreover, if λ n ( Ω ) 2 spec ∗ ( Ω ), the inequality becomes an equality in the limit as k ! 1 . When n = 1, the result says λ 1 ( Ω )  2 kT 2 k − 1 ( Ω ) T 2 k ( Ω ) with 2 kT 2 k − 1 ( Ω ) λ 1 ( Ω ) = lim . T 2 k ( Ω ) k →∞ Je ff rey Langford Bucknell University Lewisburg, PA Exit Time Moments and Eigenvalue Estimates

  6. Proof of Theorem 1 for n = 1. Proof. R Ω E x [ τ k ] dx ; put u k ( x ) = E x [ τ k ]. Then u k solve a hierarchy of Poisson Recall that T k ( Ω ) = problems: � ∆ u k = ku k − 1 in Ω u = 0 on ∂ Ω . Plugging u k into the Rayleigh quotient for λ 1 ( Ω ), we see Ω | r u k | 2 dx R λ 1 ( Ω )  . Ω u 2 R k dx Apply Green: Z Z | r u k | 2 dx = � u k ∆ u k dx Ω Ω Z = k u k u k − 1 dx Ω k Z = � ∆ u k +1 u k − 1 dx . k + 1 Ω Iterating this process yields ( k !) 2 ( k !) 2 Z Z | r u k | 2 dx = u 2 k − 1 dx = (2 k � 1)! T 2 k − 1 ( Ω ) . (2 k � 1)! Ω Ω Je ff rey Langford Bucknell University Lewisburg, PA Exit Time Moments and Eigenvalue Estimates

  7. Proof of Theorem 1 for n = 1. Proof. Similarly, Z 1 Z u k u k dx = � u k ∆ u k +1 dx k + 1 Ω Ω k Z = u k +1 u k − 1 dx . k + 1 Ω Iterating as before, k dx = ( k !) 2 u 2 k dx = ( k !) 2 Z Z u 2 (2 k )! T 2 k ( Ω ) . (2 k )! Ω Ω Ω | r u k | 2 dx , R R Ω u 2 So combining our calculations for k dx , yields λ 1 ( Ω )  2 k T 2 k − 1 ( Ω ) T 2 k ( Ω ) . We next show k →∞ 2 k T 2 k − 1 ( Ω ) λ 1 ( Ω ) = lim T 2 k ( Ω ) . Je ff rey Langford Bucknell University Lewisburg, PA Exit Time Moments and Eigenvalue Estimates

  8. Proof of Theorem 1 for n = 1. Proof. ✓ 1 ✓ 1 Start by estimating ◆ 2 k − 1 ◆ 2 k − 1 X X a 2 a 2 T 2 k − 1 ( Ω ) ν ν ν ν 2 k T 2 k − 1 ( Ω ) (2 k � 1)! ν ∈ spec ∗ ( Ω ) ν ∈ spec ∗ ( Ω ) = = .  λ 1 ✓ 1 ◆ 2 k ⌘ 2 k − 1 T 2 k ( Ω ) T 2 k ( Ω ) ⇣ a 2 1 X a 2 λ 1 λ 1 (2 k )! ν ν ν ∈ spec ∗ ( Ω ) We further estimate ✓ 1 ◆ 2 k − 1 X a 2 0 1 ν ✓ λ 1 ν ◆ 2 k − 1 1 ν ∈ spec ∗ ( Ω ) B C X a 2 λ 1 = λ 1 @ 1 + B C ν ⌘ 2 k − 1 a 2 B ν C ⇣ 1 a 2 λ 1 A ν ∈ spec ∗ ( Ω ) λ 1 λ 1 ν > λ 1 0 1 ✓ λ 1 ◆ 2 k − 1 1 B C X a 2  λ 1 @ 1 + B C ν a 2 B ν 2 C λ 1 A ν ∈ spec ∗ ( Ω ) ν > λ 1 ✓ λ 1 ◆ 2 k − 1 ! 1 + Vol( Ω )  λ 1 . a 2 ν 2 λ 1 Sending k ! 1 we see λ 1 ( Ω )  lim k →∞ 2 k T 2 k − 1 ( Ω )  λ 1 ( Ω ). T 2 k ( Ω ) Je ff rey Langford Bucknell University Lewisburg, PA Exit Time Moments and Eigenvalue Estimates

  9. Results about Variance Definition With Ω ✓ R n a C ∞ bounded domain, denote Var k ( Ω ) = R Ω Var[ τ k ] dx. We compute Var[ τ k ] = E x [( τ k � E x [ τ k ]) 2 ] = E x [ τ 2 k � u 2 k ] = u 2 k ( x ) � u 2 k ( x ) . Thus, Z u 2 k � u 2 � � Var k ( Ω ) = dx . k Ω Using our standard trick from before, Z Z Z u 2 k dx = � u 2 k ∆ u 1 dx = 2 k u 2 k − 1 u 1 dx . Ω Ω Ω Repeated application yields Z u 2 k dx = (2 k )! Z u 2 k dx . ( k !) 2 Ω Ω R Ω u 2 We can now rewrite Var k ( Ω ) in terms of k dx : ( k !) 2 Z u 2 k dx = (2 k )! � ( k !) 2 Var k ( Ω ) . Ω In the proof of Theorem 1, we showed ( k !) 2 ( k !) 2 Z Z | r u k | 2 dx = u 2 k − 1 dx = (2 k � 1)! T 2 k − 1 ( Ω ) . (2 k � 1)! Ω Ω Je ff rey Langford Bucknell University Lewisburg, PA Exit Time Moments and Eigenvalue Estimates

  10. Results about Variance Corollary (DLM) Let Ω be as in Theorem 1. For k a positive integer, let Var k ( Ω ) be the L 1 -norm of the variance of τ k : Z ( u 2 k � u 2 Var k ( Ω ) = k ) dx . Ω Then λ 1 ( Ω )  (2 k )! � ( k !) 2 T 2 k − 1 ( Ω ) Var k ( Ω ) . (2 k � 1)! Je ff rey Langford Bucknell University Lewisburg, PA Exit Time Moments and Eigenvalue Estimates

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend