existence and combinatorial model for kirillov
play

Existence and combinatorial model for KirillovReshetikhin crystals - PowerPoint PPT Presentation

Existence and combinatorial model for KirillovReshetikhin crystals Anne Schilling Department of Mathematics University of California at Davis Aarhus June 28, 2007 p. 1/ ? References This talk is based on the following papers: A.


  1. Existence and combinatorial model for Kirillov–Reshetikhin crystals Anne Schilling Department of Mathematics University of California at Davis Aarhus June 28, 2007 – p. 1/ ?

  2. References This talk is based on the following papers: • A. Schilling, Combinatorial structure of Kirillov–Reshetikhin crystals of type D (1) n , B (1) n , A (2) 2 n − 1 , preprint arXiv:0704.2046[math.QA] • M. Okado, A. Schilling, Existence of Kirillov–Reshetikhin crystals for nonexceptional types , preprint arXiv:0706.2224[math.QA] – p. 2/ ?

  3. Quantum algebras Drinfeld and Jimbo ∼ 1984: independently introduced quantum groups U q ( g ) Kashiwara ∼ 1990: crystal bases, bases for U q ( g ) -modules as q → 0 combinatorial approach Lusztig ∼ 1990: canonical bases geometric approach – p. 3/ ?

  4. Applications in... representation theory ❀ tensor product decomposition solvable lattice models ❀ one point functions conformal field theory ❀ characters number theory ❀ modular forms Bethe Ansatz ❀ fermionic formulas combinatorics ❀ tableaux combinatorics topological invariant theory ❀ knots and links – p. 4/ ?

  5. Motivation • Crystal bases are combinatorial bases for U q ( g ) as q → 0 • Affine finite crystals: • appear in 1d sums of exactly solvable lattice models • path realization of integrable highest weight U q ( g ) -modules • fermionic formulas • Irreducible finite-dimensional U q ( g ) -modules classified by Chari-Pressley via Drinfeld polynomials – p. 5/ ?

  6. Motivation • Kirillov-Reshetikhin modules W ( r ) form special s subset Conjecture [HKOTY] W ( r ) has a crystal basis B r,s s – p. 6/ ?

  7. Motivation • Kirillov-Reshetikhin modules W ( r ) form special s subset Conjecture [HKOTY] W ( r ) has a crystal basis B r,s s AIM: • prove this conjecture for g of nonexceptional type B r,s for types • provide a combinatorial crystal ˜ D (1) n , B (1) n , A (2) 2 n − 1 • prove that B r,s ∼ = ˜ B r,s – p. 6/ ?

  8. Motivation Solvable Lattice Models Bethe CTM Ansatz Bijection Rigged Highest Weight Configurations Crystals 1988 Identity for Kostka polynomials Kerov, Kirillov, Reshetikhin X = M conjecture of HKOTTY 2001 – p. 7/ ?

  9. Outline I. Motivation II. Existence of KR crystals B r,s for nonexceptional types • Definition of KR modules • Criterion for existence B r,s of type D (1) III. Combinatorial KR crystals ˜ n , B (1) n , A (2) 2 n − 1 • Dynkin diagram automorphisms • Classical crystal structure • Affine crystal structure IV. MuPAD-Combinat implementation V. Outlook and open problems – p. 8/ ?

  10. II. Existence of KR crystals B r,s for nonexceptional types – p. 9/ ?

  11. Quantum affine algebras g symmetrizable affine Kac–Moody algebra U q ( g ) quantum affine algebra associated to g : associative algebra over Q ( q ) with 1 generated by e i , f i , q h for i ∈ I , h ∈ P ∗ { α i } i ∈ I simple roots, { h i } i ∈ I simple coroots c canonical central element, δ generator of null roots P = � i Z Λ i ⊕ Z δ weight lattice A subring of Q ( q ) of rational functions without poles at q = 0 A Z = { f ( q ) /g ( q ) | f ( q ) , g ( q ) ∈ Z [ q ] , g (0) = 1 } K Z = A Z [ q − 1 ] – p. 10/ ?

  12. Prepolarization Let M be a U q ( g ) -module. A symmetric bilinear form ( , ) : M ⊗ Q ( q ) M → Q ( q ) is called prepolarization if ( q h u, v ) = ( u, q h v ) ( e i u, v ) = ( u, q − 1 i t − 1 i f i v ) ( f i u, v ) = ( u, q − 1 i t i e i v ) with q i = q ( α i ,α i ) / 2 , t i = q h i i . A prepolarization is called polarization if it is positive definite using the order f − g ∈ ∪ n ∈ Z { q n ( a + qA ) | a > 0 } f > g iff – p. 11/ ?

  13. Criterion for existence M finite-dimensional integrable U ′ q ( g ) -module ( , ) prepolarization on M M K Z submodule of M such that ( M K Z , M K Z ) ⊂ K Z λ 1 , . . . , λ m ∈ P + Assumptions A : 1. dim M λ k ≤ � m j =1 dim V ( λ j ) λ k 2. There exist u j ∈ ( M K Z ) λ j such that ( u j , u k ) ∈ δ j,k + qA ( e i u j , e i u j ) ∈ qq − 2(1+ � h i ,λ j � ) A i – p. 12/ ?

  14. Criterion for existence If Assumption A holds: Theorem: [KMN 2 ] (i) ( , ) is a polarization on M (ii) M ∼ = � j V ( λ j ) as U q ( g 0 ) -modules (iii) ( L, B ) is a crystal pseudobase of M , where L = { u ∈ M | ( u, u ) ∈ A } B = { b ∈ M K Z ∩ L/M K Z ∩ qL | ( b, b ) 0 = 1 } ( , ) 0 is Q -valued symmetric bilinear form on L/qL induced by ( , ) . – p. 13/ ?

  15. KR modules Chari-Pressley classified all irreducible finite-dimensional affine U q ( g ) -modules via Drinfeld polynomials. KR modules W ( r ) ( s ∈ Z > 0 , r = 1 , . . . , n ) correspond s to the Drinfeld polynomials � (1 − a r q 1 − s ) · · · (1 − a r q s − 1 u ) j = r r r P j ( u ) = j � = r 1 for some a r ∈ Q ( q ) – p. 14/ ?

  16. Construction of KR modules V ( λ ) extremal weight module level 0 fundamental weight ̟ i = Λ i − � c, Λ i � Λ 0 Define U ′ q ( g ) -module W ( ̟ i ) as W ( ̟ i ) = V ( ̟ i ) / ( z i − 1) V ( ̟ i ) where z i is a U ′ q ( g ) -module automorphism of V ( ̟ i ) of weight d i δ u ̟ i �→ u ̟ i + d i δ d i = max { 1 , ( α i , α i ) / 2 } W ( r ) can be obtained by from W ( ̟ r ) by the fusion s construction – p. 15/ ?

  17. Existence Theorem [Okado,S.] W ( r ) has a crystal basis B r,s . s Assumption 1. follows from recent work by Nakajima and Hernandez on characters of KR-modules Assumption 2. follows by finding appropriate λ j and explicitly calculating the prepolarization in the cases : D (1) n , B (1) n , A (2) • Case 2 n − 1 : C (1) • Case n : A (2) 2 n , D (2) • Case n +1 – p. 16/ ?

  18. Existence Theorem [Okado,S.] W ( r ) has a crystal basis B r,s . s Remark: [KMN 2 ] proved the existence of B r,s for type A (1) n and for other types for special r, s . – p. 16/ ?

  19. B r,s of type D (1) n , B (1) III. Combinatorial KR crystals ˜ n , A (2) 2 n − 1 – p. 17/ ?

  20. Axiomatic Crystals A U q ( g ) -crystal is a nonempty set B with maps wt: B → P e i , f i : B → B ∪ {∅} for all i ∈ I satisfying f i ( b ) = b ′ ⇔ e i ( b ′ ) = b if b, b ′ ∈ B wt( f i ( b )) = wt( b ) − α i if f i ( b ) ∈ B � h i , wt( b ) � = ϕ i ( b ) − ε i ( b ) b i b’ for b ′ = f i ( b ) Write r r ✲ – p. 18/ ?

  21. KR crystals g affine Kac–Moody algebra W ( r ) KR module indexed by r ∈ { 1 , . . . , n } , s ≥ 1 s ❀ finite-dimensional U ′ q ( g ) -module Chari proved � ∼ W ( r ) V (Λ) as U q ( g 0 ) -module = s Λ – p. 19/ ?

  22. KR crystals g affine Kac–Moody algebra W ( r ) KR module indexed by r ∈ { 1 , . . . , n } , s ≥ 1 s ❀ finite-dimensional U ′ q ( g ) -module Chari proved � ∼ W ( r ) V (Λ) as U q ( g 0 ) -module = s Λ g of type A (1) n ⇒ g 0 of type A n   �   ∼ W ( r ) = V r   s � �� �  s – p. 19/ ?

  23. KR crystals g affine Kac–Moody algebra W ( r ) KR module indexed by r ∈ { 1 , . . . , n } , s ≥ 1 s ❀ finite-dimensional U ′ q ( g ) -module Chari proved � ∼ W ( r ) V (Λ) as U q ( g 0 ) -module = s Λ g of type D (1) n , B (1) n , A (2) 2 n − 1 ⇒ g 0 of type D n , B n , C n r with vertical dominos sum over removed � �� � – p. 19/ ? s

  24. Example Type D (1) n , B (1) n , A (2) 2 n − 1 ∼ W (4) ) ⊕ W ( ) ⊕ W ( = W ( ) 2 ⊕ W ( ) ⊕ W ( ) ⊕ W ( ∅ ) – p. 20/ ?

  25. Dynkin automorphism Type A (1) n : KMN 2 proved existence of crystals B r,s for W r,s Shimozono gave the combinatorial structure of B r,s using σ · · · n n-1 � � � A (1) n � � 0 � � � · · · 1 2 – p. 21/ ?

  26. Dynkin automorphism Type A (1) n : KMN 2 proved existence of crystals B r,s for W r,s Shimozono gave the combinatorial structure of B r,s using σ · · · n n-1 � � � A (1) n � � 0 � � � · · · 1 2 e 0 = σ − 1 ◦ e 1 ◦ σ f 0 = σ − 1 ◦ f 1 ◦ σ – p. 21/ ?

  27. Dynkin automorphism Type D (1) n , B (1) n , A (2) 2 n − 1 : n − 1 0 � � . . . n − 2 3 2 Type D (1) σ n : � � � � � n 1 � � 0 � . . . n n − 1 2 3 Type B (1) σ n : � � � � � � 1 � 0 � . . . n n − 1 3 2 Type A (2) σ 2 n − 1 : � � � � � � 1 � e 0 = σ ◦ e 1 ◦ σ f 0 = σ ◦ f 1 ◦ σ and – p. 22/ ?

  28. Crystals B 1 , 1 0 D (1) n-1 n n n 1 2 n-2 n-2 2 1 · · · · · · 1 2 n-1 n-1 2 1 n n n-1 0 0 B (1) n 1 2 n-1 n n n-1 2 1 · · · · · · 1 2 n 0 n 2 1 0 0 A (2) 2 n − 1 1 2 n-1 n n-1 2 1 · · · · · · n 1 2 n 2 1 0 – p. 23/ ?

  29. Classical decomposition By construction � B r,s ∼ B (Λ) = Λ as X n = D n , B n , C n crystals ⇒ crystal arrows f i , e i are fixed for i = 1 , 2 , . . . , n – p. 24/ ?

  30. Classical crystal ) ⊗| Λ | B (Λ) ⊂ B ( highest weight 4 3 2 2 2 1 1 1 �→ 4 ⊗ 3 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1 f i , e i for i = 1 , 2 , . . . , n act by tensor product rule b ⊗ b ′ − − − −− + + + + + ++ � �� � � �� � ���� � �� � ϕ i ( b ) ε i ( b ) ϕ i ( b ′ ) ε i ( b ′ ) – p. 25/ ?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend