excited ing state spectroscopy in lattice qcd
play

Excited(ing) State Spectroscopy in Lattice QCD John Bulava PH Dept. - PowerPoint PPT Presentation

Excited(ing) State Spectroscopy in Lattice QCD John Bulava PH Dept. - TH Division CERN Aug. 30 th , 2012 GGI Workshop - New Frontiers in Lattice Gauge Theory why study excited states? Where are the missing reso- Mass/(MeV/c 2 ) nances? (


  1. Excited(ing) State Spectroscopy in Lattice QCD John Bulava PH Dept. - TH Division CERN Aug. 30 th , 2012 GGI Workshop - New Frontiers in Lattice Gauge Theory

  2. why study excited states? Where are the ‘missing’ reso- Mass/(MeV/c 2 ) nances? ( N ∗ ) N(I=1/2) ∆ (I=3/2) QM QM exp exp H 3,11 (2420) 2400 ◮ Compare experiment (PDG F 37 (2390) G 19 (2250) D 35 (2350) H 19 (2220) H 39 (2300) D 15 (2200) G 17 (2190) 2200 ’09) to quark model P 11 (2100) S 31 (2150) S 11 (2090) F 35 (2000) D 13 (2080) F 37 (1950) D 33 (1940) F 15 (2000) 2000 (Capstick, Roberts ’00) D 35 (1930) F 17 (1990) P 33 (1920) P 13 (1900) P 31 (1910) P 13 (1720) F 35 (1905) P 11 (1710) 1800 S 31 (1900) ◮ Too many d.o.f in the QM? D 13 (1700) P 31 (1750) F 15 (1680) D 33 (1700) D 15 (1675) S 11 (1650) S 31 (1620) 1600 P 33 (1600) Reduced by diquarks (Jaffe) S 11 (1535) D 13 (1520) P 11 (1440) 1400 ◮ Experiment is mostly P 33 (1232) 1200 → N π . States which couple 1000 weakly? N ∗ program at P 11 (939) JLab. Where are the ‘QCD Exotica’? ◮ Hybrids?: Charmonia, GLuEX, BESIII ◮ Tetraquarks?

  3. Spectroscopy in Lattice QCD ◮ Finite a , L , and T. Calculate Euclidean n-point functions ◮ Spectral rep. of two point functions: A n e − E n t + O ( e − ET ) , C 2 pt ( t ) = � 0 |O ( t ) ¯ � O (0) | 0 � = n A n = |� 0 | ˆ O| n �| 2 What are ‘Resonances’? ◮ Def: Poles in the S-matrix on 2nd Riemannian sheet ◮ Often show up as ‘bumps’ in the cross section Maiani-Testa No Go Theorem: S-matrix elements cannot be obtained from (I.V.) Euclidean correlators (except in principle at threshold).

  4. K¨ all´ en-Lehmann representation: � ∞ 1 d µ 2 ρ ( µ 2 ) ∆( p ) = p 2 − µ 2 + i ǫ 0 In I.V., ρ ( µ 2 ) has δ -functions, and a continuum above threshold. In F.V. ρ ( µ 2 ) is discrete above threshold. Behavior of F.V. energies below inelastic thresholds is well known (L¨ uscher ‘86). Generalizations: ◮ Moving frames: Gottlieb, Rummukainen ‘95 ◮ Multiple 2-particle channels: Liu, Feng, He ‘05 ◮ ... ◮ 2 Non-identical particles, moving frame: Leskovec, Prelovsek ‘12 General prescription to extract I.V. resonance info above 3 (or more) particle thresholds lacking.

  5. Below threshold, F.V energy corresponds to I.V. bound state up to O ( e − m π L ). Near threshold, F.V energies are distorted. Avoided level crossing occurs. Example: taken from (Gottlieb, Rummukainen ’95) 4! ρ 4 + λ 2 4! φ 4 + g ◮ Two scalars: 4 m φ > m ρ > 2 m φ , L int = λ 1 2 ρφ 2 ◮ Spectrum from GEVP with single and multi-particle ops. ◮ Left: g = 0, Right: g = 0 . 008

  6. The GEVP Solve (L¨ uscher, Wolff ‘90) C ( t ) v n ( t , t 0 ) = λ n ( t , t 0 ) C ( t 0 ) v n ( t , t 0 ) , C ij ( t ) = �O i ( t ) ¯ O j (0) � Method 1: ◮ Avoids diagonalization at large t ◮ Solve GEVP for t = t ∗ . Discard λ n ( t ∗ , t 0 ). ◮ Use { v n ( t ∗ , t 0 ) } to rotate C ( t ). ◮ Ensure that the off-diagonal elements remain small. Method 2: ◮ Diagonalize on each t ◮ (Blossier, et al. ‘10): If t 0 > t / 2 E eff n ( t , t 0 ) = − ∂ t log λ n ( t , t 0 ) = E n + O ( e − ( E N +1 − E n ) t )

  7. In practice, weakly coupled low-lying states are problematic Example: C 2 pt m ψ im ψ ∗ jm e − E m t ( t ) = � ij ◮ Energies: r 0 E m = m , m = 1 .. 20 ◮ A 3 × 3 GEVP, ψ mi , i = 1 .. 3 chosen empirically ◮ Solve for E eff n ( t , t 0 = t / 2) 1.025 6.5 (t) (t) (t) 2.5 Level 1 Level 2 eff eff eff 6.0 1.020 Level 3 E E 2.4 E 0 1.015 0 0 5.5 r r r 2.3 5.0 1.010 2.2 4.5 1.005 2.1 4.0 1.000 2.0 3.5 0.995 1.9 3.0 0.990 2.5 1.8 0 1 2 3 0 1 2 3 0 1 2 3 t/r t/r t/r 0 0 0 Reduce ψ i 1 , i = 1 .. 3 by 100: 2.2 12 (t) (t) (t) 4.0 Level 2 2.0 Level 3 eff eff eff 10 E E E 3.5 1.8 0 0 0 r r r 8 3.0 1.6 Level 1 2.5 1.4 6 2.0 1.2 4 1.5 1.0 1.0 2 0.8 0 1 2 0 1 2 0 1 2 t/r t/r t/r 0 0 0

  8. Simple ops aren’t enough Using the GEVP, can access the ψ im = lim t →∞ ψ eff ( t ) Test case (JB, Donnellan, Sommer, ‘11): PS static-light mesons, N f = 0, a s = a t ∼ 0 . 09 fm , L ∼ 1 . 5 fm , m q ∼ m s Ops. made from different smearings. Columns: m = 1 .. 5, Rows: r / r 0 = 0 . 0 , 0 . 36 , 0 . 62 , 1 . 13

  9. Spatially Extended operators: (Basak, et al. ’05), (Foley, et al. ‘07), (Dudek, et al. ‘08) ✉ ✉ ❡ ✉ ✎☞ ✉ ✉ ♠ ✉✉ ✉ ✉ ✉ ✉ ❤ ✉ ❤ ✉ ✉ ✉ ✍✌ single- singly- doubly- doubly- triply- site displaced displaced-I displaced-L displaced-T ❡ ❡ ✈ ✓ ✓ ❡✈ ❡ ✈ ❡ ✈ ✈ single- singly- doubly- triply- triply- site displaced displaced-L displaced-U displaced-O The Goal: For each symmetry channel pick a maximum energy. Include an op. for each (known) state below that energy. J=0, I=0 (Isoscalar-scalar channel): ◮ single σ -meson operators ◮ single glueball operators ◮ I = 0 two pion operators, moving and at rest ◮ ¯ K − K operators, moving and at rest ◮ ...

  10. all-to-all Needed to include multi-hadrons in {O i } t f t f t 0 t 0 Needed even for isoscalar single hadrons t f t 0 t f t 0

  11. Distillation Exact smeared-smeared or point-smeared all-to-all propagators (Peardon, et al ‘09) SQ − 1 S = v i K ij v † j N ev � v † S = i v i , ∆ v i = λ i v i i Smearing controlled by λ max . Requires N inv ∼ N ev , but N ev ∼ V . 0.6 1 3 lattice 12 N=64 0.5 0.9 N=32 N=8 0.8 0.7 0.4 λ n 0.6 Ψ (r) 0.5 0.3 0.4 3 lattice 16 0.3 0.2 0.2 0.1 0.1 0 10 20 30 40 50 0 0 1 2 3 4 5 6 7 8 9 10 r/a s n

  12. Calculating the eigenpairs Solution of N t 3d eigenproblems of a hermitian operator. Use a Krylov-Spectral Restarted Lanczos (KRSL) algorithm (Wu, Simon ‘00) Chebyshev acceleration is very helpful B = 1 + 2( ˜ ∆ + λ C ) , A = T n ( B ) λ L − λ C Cost is dominated by global re-orthog. of the Krlov space. Cost ∼ N 2 ev ∗ N itr ∗ V ∼ V 4 Largest test: L = 3 . 8 fm , N ev = 384, still a tiny fraction of the total cost. Dominant cost is Dirac matrix inv. Inv . cost ∼ N ev ∗ V ∼ V 2

  13. Distillation results Results on small volumes ( < 2 . 4 − 2 . 9 fm ): ◮ N , ∆ , and Ω baryons: (JB, et al. ‘10) ◮ ππ -scattering: (Dudek, et al. ‘12) ◮ D π -scattering: (Mohler, et al. ‘12) ◮ K π -scattering: (Lang, et al. ‘12) ◮ ρ and a 1 meson decay: (Prelovsek, et al. ‘11) ◮ I = 0 mesons: (Dudek, et al. ‘11) ◮ Charmonium: (Liu, et al. ‘11) ◮ Hybrid Baryons: (Dudek, Edwards ‘12)

  14. Improvement when adding multi-hadron ops. (Prelovsek, et al. ‘12): a s = a t = 0 . 12 fm , m π = 266 MeV , L s = 2 fm , D ∗ 0 channel ( J P = 0 + ) qq: O 1,3 ; D π: Ο 5,6 just qq: O 1,3,4 just D π: Ο 5,6 1.8 1.8 1.7 1.7 1.6 1.6 1.5 1.5 aE 1.4 1.4 1.3 1.3 1.2 1.2 1.1 1.1 1 1 4 6 8 10 12 14 4 6 8 10 12 14 4 6 8 10 12 14 t t t Left: single D ∗ 0 ops and D π ops Middle: just single D ∗ 0 ops Right: just D π ops

  15. Stochastic LapH Introduce noise in the subspace (Morningstar, et al. ‘11) η ( r ) a α ( x , t ) = ρ ( r ) α i ( t ) v i at ( x ) SQ − 1 S = E r ( ψη † ) , ψ ( r ) = SQ − 1 η ( r ) Dilute in ( α, i , t )-space: η [ d ] = P [ d ] η, ψ [ d ] = SQ − 1 η [ d ] , SQ − 1 S � E r ( ψ [ d ] η [ d ] † ) = d 5 50 C(t=5) triply-displaced-T nucleon (TF,S1,LI8) C(t=5) triply-displaced-T nucleon 40 3 lattice 20 LapH noise (TF,S1,LI12) 3 lattice 16 lattice noise 30 σ/σ gn (TF,S1,LI16) σ/σ gn (TF,SF,LI8) 20 10 0 0 0 0.2 0.4 0 0.2 0.4 0.6 0.8 − ½ − ½ N D N D

  16. Correlator construction is simple and efficient! ◮ For connected lines: N inv / cfg . ∼ 32 × N t 0 ◮ For disconnected lines: N inv / cfg . ∼ 32 × 16 × (0 . 03 fm / a t ) Example: 4 connected lines, N t 0 = 1, N inv / cfg = 128 e i p · x 0 η [ i ] a α ( x 0 ) η [ j ] b β ( x 0 ) η [ k ] Ω ijk ( t 0 ) = a abc � b γ ( x 0 ) αβγ x 0 e i p · x ψ [ i ] a α t 0 ( x ) ψ [ j ] b β t 0 ( x ) ψ [ k ] Σ ijk ( t , t 0 ) = a abc � b γ t 0 ( x ) αβγ x ψ [ i ] † t 0 ( x ) A 0 ψ [ j ] e i p · x ψ [ i ] † t 0 ( x )Γ ψ [ j ] � � A ij ( t , t 0 ) = t 0 ( x ) , ω ij ( t , t 0 ) = t 0 ( x ) x x � e i p · x 0 η [ i ] † ( x 0 )Γ η [ j ] ( x 0 ) ρ ij ( t 0 ) = x 0 Correlation functions: C π ( t − t 0 ) = ω ij ρ ij , C f π ( t − t 0 ) = A ij ρ ij , C N ( t − t 0 ) = Σ ijk Ω ∗ ijk , C I =2 ππ ( t − t 0 ) = ω ij ρ jk ω k ℓ ρ ℓ i − C 2 π

  17. Stochastic LapH and quark-disc. diagrams Exact all-to-all is ‘wasteful’(Wong, et al. ‘10): ◮ HSC Lattice: N f = 2 + 1, a s = . 12 fm = 3 . 5 a t , m π = 400 MeV , L s = 1 . 9 fm ◮ Left: ‘Box’ diagram for ππ , Right: Disc. contribution to scalar ◮ For the scalar: ◮ Distillation: N inv / cfg . = 16384 ◮ Stochastic LapH: N inv / cfg . = 1024 3 100 [F,F,F] [F,F,F] t 0 -t [F,F,F] t-t [I16,F,I8] [F,F,I8] t 0 -t [I16,F,I8] t-t 80 2 60 C( τ ) C( τ ) 40 1 20 0 0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 τ /a t τ /a t

  18. Scalar I = 0 channel (JB, D. Lenkner, et al. ‘11): ◮ HSC Lattice: N f = 2 + 1, a s = . 12 fm = 3 . 5 a t , m π = 400 MeV , L s = 1 . 9 fm ◮ 5x5 GEVP: 2 single meson ops., 2 ππ ops., 1 glueball op. ◮ Results of a preliminary diagonalization 0.8 0.8 0.8 0.8 ) -1 Level 0 Level 1 Level 2 Level 3 t m (a 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0 0 0 0 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 t t t t

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend