excitation spectrum of interacting bosons in the mean
play

Excitation spectrum of interacting bosons in the mean-field - PowerPoint PPT Presentation

Excitation spectrum of interacting bosons in the mean-field infinite-volume limit Marcin Napi orkowski Jan Derezi nski Faculty of Physics, University of Warsaw 21 III 2014 Warwick EPSRC Symposium on Statistical Mechanics: Many-Body


  1. Excitation spectrum of interacting bosons in the mean-field infinite-volume limit Marcin Napi´ orkowski Jan Derezi´ nski Faculty of Physics, University of Warsaw 21 III 2014 Warwick EPSRC Symposium on Statistical Mechanics: Many-Body Quantum Systems Marcin Napi´ orkowski Excitation spectrum of interacting bosons

  2. Model Model We consider an interacting, homogeneous Bose gas. The Hamiltonian of such an N -particle system is given by N � � H N = − ∆ i + λ v ( x i − x j ) i =1 1 ≤ i<j ≤ N defined on the Hilbert space L 2 sym (( R d ) N ) . λ ≥ 0 is a coupling constant. We assume v is a real and symmetric function such that v ∈ L 1 ( R d ) , v ∈ L 1 ( R d ) ˆ v ( x ) ≥ 0 , x ∈ R d , ˆ v ( p ) ≥ 0 , p ∈ R d . Marcin Napi´ orkowski Excitation spectrum of interacting bosons

  3. Model We want to describe a physical system of positive density in a large volume limit. To this end we replace R d by the torus ( − L/ 2 , L/ 2] d and the potential by its periodized version v L ( x ) = 1 � v ( p )e i px . ˆ L d p ∈ (2 π/L ) Z d The Hamiltonian in the box reads N � � H L ∆ L v L ( x i − x j ) . N = − i + λ i =1 1 ≤ i<j ≤ N The total momentum operator N P L � − i ∂ L N = x i . i =1 Marcin Napi´ orkowski Excitation spectrum of interacting bosons

  4. The excitation spectrum The excitation spectrum H N and P N commute, thus we can consider the joint energy-momentum spectrum sp( H N , P N ) ⊂ R d +1 . Let E N denote the ground state energy of H N . Then Excitation spectrum := sp( H N − E N , P N ) . Marcin Napi´ orkowski Excitation spectrum of interacting bosons

  5. The excitation spectrum Bogoliubov excitation spectrum The diagonalised Bogoliubov Hamiltonian � e ( p ) b † H Bog = E Bog + p b p p � =0 p 4 + 2 λρ ˆ v ( p ) p 2 and � with e ( p ) = E Bog := − 1 | p | 2 + ˆ � � � | p | 4 + 2 λρ ˆ � v ( p ) | p | 2 v ( p ) − . 2 p ∈ 2 π L Z d \{ 0 } Marcin Napi´ orkowski Excitation spectrum of interacting bosons

  6. The excitation spectrum Bogoliubov excitation spectrum The diagonalised Bogoliubov Hamiltonian � e ( p ) b † H Bog = E Bog + p b p p � =0 p 4 + 2 λρ ˆ v ( p ) p 2 and � with e ( p ) = E Bog := − 1 | p | 2 + ˆ � � � | p | 4 + 2 λρ ˆ � v ( p ) | p | 2 v ( p ) − . 2 p ∈ 2 π L Z d \{ 0 } ⇒ Choice of mean-field scaling λ = 1 /ρ. Marcin Napi´ orkowski Excitation spectrum of interacting bosons

  7. The excitation spectrum L Z d define the Bogoliubov elementary excitation For p ∈ 2 π p 4 + 2ˆ � spectrum e ( p ) := v ( p ) p 2 . L Z d we consider the Bogoliubov excitation energies For any p ∈ 2 π with total momentum p : � j � e ( k i ) : k 1 , . . . , k j ∈ 2 π � L Z d , k 1 + . . . + k j = p , j = 1 , 2 , . . . i =1 Marcin Napi´ orkowski Excitation spectrum of interacting bosons

  8. The excitation spectrum L Z d define the Bogoliubov elementary excitation For p ∈ 2 π p 4 + 2ˆ � spectrum e ( p ) := v ( p ) p 2 . L Z d we consider the Bogoliubov excitation energies For any p ∈ 2 π with total momentum p : � j � e ( k i ) : k 1 , . . . , k j ∈ 2 π � L Z d , k 1 + . . . + k j = p , j = 1 , 2 , . . . i =1 Let K 1 Bog ( p ) , K 2 Bog ( p ) , . . . be these energies in the increasing order. Similarly, let K 1 N ( p ) , K 2 N ( p ) , . . . be the corresponding excitation energies of H N , that is, the eigenvalues of H N − E N of total momentum p in the increasing order. Marcin Napi´ orkowski Excitation spectrum of interacting bosons

  9. Theorem Theorem Lower bound Let c > 0 . Then there exists C such that 1 if L 2 d +2 ≤ cN, then E N ≥ 1 v ( 0 )( N − 1) + E Bog − CN − 1 / 2 L 2 d +3 ; 2ˆ 2 if in addition K j N ( p ) ≤ cNL − d − 2 , then 1 E N + K j v ( 0 )( N − 1) + E Bog + K j N ( p ) ≥ 2ˆ Bog ( p ) K j N ( p ) + L d � 3 / 2 . − CN − 1 / 2 L d/ 2+3 � Marcin Napi´ orkowski Excitation spectrum of interacting bosons

  10. Theorem Upper bound Let c > 0 . Then there exists c 1 > 0 and C such that 1 if L 2 d +1 ≤ cN L d +1 ≤ c 1 N, and then E N ≤ 1 v ( 0 )( N − 1) + E Bog + CN − 1 / 2 L 2 d +3 / 2 ; 2ˆ 2 if in addition K j cNL − d − 2 Bog ( p ) ≤ K j c 1 NL − 2 , and Bog ( p ) ≤ then 1 E N + K j v ( 0 )( N − 1) + E Bog + K j N ( p ) ≤ 2ˆ Bog ( p ) + CN − 1 / 2 L d/ 2+3 ( K j Bog ( p ) + L d − 1 ) 3 / 2 . Marcin Napi´ orkowski Excitation spectrum of interacting bosons

  11. Theorem By the exponential property of Fock spaces we have the identification � l 2 (2 π � � C ⊕ l 2 (2 π � L Z d \ { 0 } ) L Z d ) H = Γ s = Γ s l 2 � 2 π � �� L Z d \{ 0 } ≃ Γ s ( C ) ⊗ Γ s . We embed the space of the zeroth mode Γ s ( C ) = l 2 ( { 0 , 1 , . . . } ) in a larger space l 2 ( Z ) . The extended space l 2 � 2 π H ext := l 2 ( Z ) ⊗ Γ s � �� L Z d \{ 0 } . We have also a unitary operator U | n 0 � ⊗ Ψ > = | n 0 − 1 � ⊗ Ψ > . For p � = 0 we define b p := a p U † (on H ext ). Marcin Napi´ orkowski Excitation spectrum of interacting bosons

  12. Theorem Marcin Napi´ orkowski Excitation spectrum of interacting bosons

  13. Theorem Thank you for your attention! Marcin Napi´ orkowski Excitation spectrum of interacting bosons

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend