estimation of
play

Estimation of Transformations Shao-Yi Chien Department of - PowerPoint PPT Presentation

Estimation of Transformations Shao-Yi Chien Department of Electrical Engineering National Taiwan University Fall 2018 1 Outline Estimation 2D Projective Transformation [Slides credit: Marc Pollefeys] 2 Parameter Estimation


  1. Estimation of Transformations 簡韶逸 Shao-Yi Chien Department of Electrical Engineering National Taiwan University Fall 2018 1

  2. Outline • Estimation – 2D Projective Transformation [Slides credit: Marc Pollefeys] 2

  3. Parameter Estimation • 2D homography Given a set of (x i ,x i ’), compute H (x i ’=Hx i ) • 3D to 2D camera projection Given a set of (X i ,x i ), compute P (x i =PX i ) • Fundamental matrix Given a set of (x i ,x i ’), compute F (x i ’ T Fx i =0) • Trifocal tensor Given a set of (x i ,x i ’,x i ”), compute T

  4. Number of Measurements Required • At least as many independent equations as degrees of freedom required • Example:        x h h h x 11 12 13       x'    Hx λ y h h h y       21 22 23       1 1       h h h 31 32 33 2 independent equations / point 8 degrees of freedom 4x2 ≥8

  5. Approximate Solutions • Minimal solution • 4 points yield an exact solution for H • More points • Robust estimation algorithms, such as RANSAC • No exact solution, because measurements are inexact (“noise”) • Search for “best” according to some cost function • Algebraic or geometric/statistical cost

  6. Gold Standard Algorithm • Cost function that is optimal for some assumptions • Computational algorithm that minimizes it is called “Gold Standard” algorithm • Other algorithms can then be compared to it

  7. Direct Linear Transformation (DLT)   T 1     h x x    Hx x Hx 0  i     i i i i      T T  2 x , , Hx h x x y w   i i i i i i T   3   h x T T      3 2 h x h x i y w   i i i i   T T       1 3 x Hx h x h x w x   i i i i i i T T      2 1 h x h x x y   i i i i        T T T 1 0 x x h w y   i i i i         T T T 2 x 0 x h 0 w x   i i i i        T T T 3 x x 0 h y x     i i i i  A h 0 i

  8. Direct Linear Transformation (DLT) • Equations are linear in h  A h 0 i • Only 2 out of 3 are linearly independent (indeed, 2 eq/pt)        T T T 1 0 x x h w y   i i i i         T T T 2 x 0 x h 0 w x   i i i i        T T T 3 x x 0 h y x     i i i i

  9. Direct Linear Transformation (DLT) • Equations are linear in h  A h 0 i • Only 2 out of 3 are linearly independent (indeed, 2 eq/pt)   1 h        T T T 0 x x w y    2 i i i i   h 0    T T T    x 0 x  w x 3 i i i i h   • Holds for any homogeneous representation, e.g. ( x i ’, y i ’,1)

  10. Direct Linear Transformation (DLT) • Solving for H   A 1   A   Ah   2 h 0 0   A 3    A  4 size A is 8x9 or 12x9, but rank 8 T is not interesting Trivial solution is h =0 9 1-D null-space yields solution of interest h  pick for example the one with 1

  11. Direct Linear Transformation (DLT) • Over-determined solution   A 1   A    2 h 0 Ah  0       A  n No exact solution because of inexact measurement i.e. “noise” Find approximate solution h  - Additional constraint needed to avoid 0, e.g. 1 Ah  - Ah 0 not possible, so minimize

  12. DLT Algorithm Objective Given n≥4 2D to 2D point correspondences {x i ↔x i ’}, determine the 2D homography matrix H such that x i ’=Hx i Algorithm For each correspondence x i ↔x i ’ compute A i . Usually (i) only two first rows needed. Assemble n 2x9 matrices A i into a single 2 n x9 matrix A (ii) (iii) Obtain SVD of A. Solution for h is last column of V (iv) Determine H from h

  13. Inhomogeneous Solution Since h can only be computed up to scale, ~ h pick h j =1, e.g. h 9 =1, and solve for 8-vector        0 0 0 ' ' ' ' ' ' x w y w w w x y y y w y ~    i i i i i i i i i i i i h      ' ' ' 0 0 0 ' '   '  x w y w w w x x y x w x i i i i i i i i i i i i Solve using Gaussian elimination (4 points) or using linear least-squares (more than 4 points) However, if h 9 =0 this approach fails also poor results if h 9 close to zero Therefore, not recommended Note h 9 =H 33 =0 if origin is mapped to infinity   0       T l Hx 0 0 1 H 0 0    0    1 

  14. Degenerate Configurations x 1 x 1 x 1 x 4 x 4 x 4 x 2 H? H’? x 2 x 2 x 3 x 3 x 3 (case B) (case A)    x Hx 0 Constraints: i =1,2,3,4 i i   * T H x l Define: 4       * T Then, H x x l x 0 , 1 , 2 , 3 i 4 i i       * T H x x l x x k 4 4 4 4 H * is rank-1 matrix and thus not a homography If H * is unique solution, then no homography mapping x i → x i ’(case B) If further solution H exist, then also α H * + β H (case A) (2-D null-space in stead of 1-D null-space)

  15. Solutions from Lines 2D homographies from 2D lines   Ah  T l H l 0 i i Minimum of 4 lines 3D Homographies (15 dof) Minimum of 5 points or 5 planes 2D affinities (6 dof) Minimum of 3 points or lines Conic provides 5 constraints

  16. Solutions from Mixed Type • 2D homography • cannot be determined uniquely from the correspondence of 2 points and 2 line • can from 3 points and 1 line or 1 point and 3 lines 16

  17. Cost Functions • Algebraic distance • Geometric distance • Reprojection error • Comparison • Geometric interpretation • Sampson error

  18. Algebraic Distance Ah DLT minimizes  Ah e residual vector e partial vector for each (x i ↔ x i ’) i algebraic error vector 2       T T T 0 x x   w y  2   2 i i i i   x , Hx h d e   alg   i i i T T T x 0 x   w x i i i i algebraic distance       2    T 2 2 x , x where a , , x x d a a a a a alg 1 2 1 2 1 2 3 1 2      2 2 2    2 x , Hx Ah d e e alg i i i i i Not geometrically/statistically meaningfull, but given good normalization it works fine and is very fast (use for initialization for non-linear minimization)

  19. Geometric Distance x measured coordinates ˆ x estimated coordinates x true coordinates d (.,.) Euclidean distance (in image) Error in one image e.g. calibration pattern    ˆ   2 H argmin x , H x d i i H i Symmetric transfer error      ˆ 2     2 - 1 H argmin x , H x x , Hx d d i i i i H i Reprojection error        ˆ      2 2 ˆ ˆ ˆ ˆ H , x , x argmin x , x x , x d d i i i i i i  ˆ ˆ H, x , x ˆ i   i i ˆ ˆ subject to x H x i i

  20. Symmetric Transfer Error v.s. Reprojection Error Symmetric Transfer Error     2    2 - 1 x, H x x , Hx d d Reprojection Error        d ˆ 2 ˆ 2 x, x x , x d

  21. Comparison of Geometric and Algebraic Distances Error in one image                T ˆ ˆ ˆ ˆ T x , , x , , H x x y w x y w i i i i i i i i   1 h             ˆ ˆ   T T T y w w y 0 x x w y       2 i i i i i i i i   h A h e           ˆ ˆ T T T i i    x 0 x  w x   w x x w 3 i i i i h i i i i                       ˆ 2 ˆ ˆ 2 ˆ ˆ 2 x , x d y w w y w x x w alg i i i i i i i i i i         1 / 2               2 2 2 ˆ ˆ ˆ ˆ ˆ x , x / / / / d y w y w x w x w i i i i i i i i i i        ˆ ˆ x , x / d w w these two distance metrics are related, but not identical alg i i i i  ˆ    h 3 x 1 w w typical, but not , except for affinities i i i  For affinities, DLT can minimize geometric distance

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend