epsilon local rigidity and numerical algebraic geometry
play

Epsilon local rigidity and numerical algebraic geometry Andrew - PowerPoint PPT Presentation

Epsilon local rigidity and numerical algebraic geometry Andrew Frohmader 1 Alexander Heaton 2 1 University of Wisconsin Milwaukee 2 Technische Universit at Berlin and Max Planck Institute for Mathematics in the Sciences April 2, 2020


  1. Epsilon local rigidity and numerical algebraic geometry Andrew Frohmader 1 Alexander Heaton 2 1 University of Wisconsin Milwaukee 2 Technische Universit¨ at Berlin and Max Planck Institute for Mathematics in the Sciences April 2, 2020 Frohmader, Heaton Epsilon local rigidity

  2. Connected graph ( V, E ) with n nodes and m edges. Embedded in R d by the map p : [ n ] → R d We say p = ( p ik ) ∈ R nd . A deformation of p is a continuous map p ( t ) : [0 , 1] → R nd . A rigid motion is a deformation preserving � d � � ( p ik ( t ) − p jk ( t )) 2 ij ∈ ( [ n ] k =1 2 ) � d +1 � . Euclidean group of rigid motions has dimension 2 Frohmader, Heaton Epsilon local rigidity

  3. � [ n ] � , | E | = m . Consider p : [ n ] → R d , and E ⊂ 2 [6] = { 1 , 2 , 3 , 4 , 5 , 6 } E = { 12 , 13 , 14 , 15 , 23 , 25 , 26 , 34 , 36 , 45 , 46 , 56 }     1 0 0 p 11 p 12 p 13 √   − 1 3     0 p 21 p 22 p 23     2 2 √     − 1 3 p 31 p 32 p 33 − 0     2 2 p = = .     √  p 41 p 42 p 43   3 − 1  − 3     2 2 √     p 51 p 52 p 53 3 − 1  3  2 2 p 61 p 62 p 63 0 1 3 We say p ∈ R nd . Frohmader, Heaton Epsilon local rigidity

  4. g : C nd → C m p ∈ R nd � [ n ] � = ⇒ g ( x ) = 0 E ⊂ 2 | E | = m V ( g ) , V R ( g ) � � x ∈ C nd : g ( x ) = 0 V ( g ) := V R ( g ) := V ( g ) ∩ R nd . Frohmader, Heaton Epsilon local rigidity

  5. g : C nd → C m p ∈ R nd � [ n ] � = ⇒ g ( x ) = 0 E ⊂ 2 V ( g ) , V R ( g ) | E | = m   ( x 11 − x 21 ) 2 + ( x 12 − x 22 ) 2 + ( x 13 − x 23 ) 2 − 3 ( x 11 − x 31 ) 2 + ( x 12 − x 32 ) 2 + ( x 13 − x 33 ) 2 − 3 � √ 3 + 2 � 2     ( x 11 − x 41 ) 2 + ( x 12 − x 42 ) 2 + ( x 13 − x 43 ) 2 − 1   − 37 0 � √ 3 − 2 � 2  4 4  0  ( x 11 − x 51 ) 2 + ( x 12 − x 52 ) 2 + ( x 13 − x 53 ) 2 − 1    − 37 0  4 4    ( x 21 − x 31 ) 2 + ( x 22 − x 32 ) 2 + ( x 23 − x 33 ) 2 − 3 0     � √ 3 + 1 � 2    0  ( x 21 − x 51 ) 2 + ( x 22 − x 52 ) 2 + ( x 23 − x 53 ) 2 − 1 − 9     � √ 3 − 2 � 2 0 g ( x ) = = . 2     0 ( x 21 − x 61 ) 2 + ( x 22 − x 62 ) 2 + ( x 23 − x 63 ) 2 − 1 − 37     � √ 3 − 1 � 2 4 4 0     ( x 31 − x 41 ) 2 + ( x 32 − x 42 ) 2 + ( x 33 − x 43 ) 2 − 1 0  − 9    � √ 3 + 2 � 2 2 0   ( x 31 − x 61 ) 2 + ( x 32 − x 62 ) 2 + ( x 33 − x 63 ) 2 − 1  − 37  0 4 4   0 ( x 41 − x 51 ) 2 + ( x 42 − x 52 ) 2 + ( x 43 − x 53 ) 2 − 3 ( x 41 − x 61 ) 2 + ( x 42 − x 62 ) 2 + ( x 43 − x 63 ) 2 − 3 ( x 51 − x 61 ) 2 + ( x 52 − x 62 ) 2 + ( x 53 − x 63 ) 2 − 3 Frohmader, Heaton Epsilon local rigidity

  6. Definition A flex of p is a deformation p ( t ) : [0 , 1] → R nd such that g ( p ( t )) = 0 for all t ∈ [0 , 1] and which is not a rigid motion. Definition The configuration p is called locally rigid if no flex exists. In the 2009 paper by Timothy Abbott, Reid Barton, and Eric Demaine, “Generalizations of Kempe’s Universality Theorem” [ABD09] deciding local rigidity was shown to be Co-NP hard. Frohmader, Heaton Epsilon local rigidity

  7. g : C nd → C m p ∈ R nd � [ n ] � = ⇒ g ( x ) = 0 E ⊂ 2 V ( g ) , V R ( g ) | E | = m The Jacobian dg : C nd → C m is a linear map, a matrix. Frohmader, Heaton Epsilon local rigidity

  8. Jacobian dg : C nd → C m is a linear map, a matrix. Frohmader, Heaton Epsilon local rigidity

  9.   f 1 = − x 3 + xy   f 2 = − x 4 + xz  : C 3 → C 3 f ( x ) =  f 3 = x 7 − x 5 y − x 4 z + x 2 yz Frohmader, Heaton Epsilon local rigidity

  10. � � − 3 x 2 + y 0 x − 4 x 3 + z d f = 0 x 7 x 6 − 5 x 4 y − 4 x 3 z + 2 xyz − x 5 + x 2 z − x 4 + x 2 y f | (0 , 0 , 0) f | (0 , 5 , 3) f | (1 , 1 , 1) d d d � 0 � � 5 � � − 2 � 0 0 0 0 1 0 0 0 0 3 0 0 − 3 0 1 0 0 0 0 0 0 0 0 0 Frohmader, Heaton Epsilon local rigidity

  11. Jacobian dg : C nd → C m has a generic rank . Choosing q = ( q ik ) ∈ C nd randomly, dg | q becomes a matrix with scalar entries. Calculate its rank (Gaussian elimination if exact computation, or SVD for floating point calculations). Frohmader, Heaton Epsilon local rigidity

  12. By the way, 3 / 4 of triangles are obtuse. From Edelman and Strang: Frohmader, Heaton Epsilon local rigidity

  13. Theorem A configuration p with n nodes embedded in R d is infinitesimally rigid if � � d + 1 rank ( dg | p ) = nd − , 2 � � d + 1 corank ( dg | p ) = . 2 Theorem Infinitesimal rigidity implies local rigidity. Why does this work? Frohmader, Heaton Epsilon local rigidity

  14. Theorem Infinitesimal rigidity implies local rigidity. Proof. Since the Euclidean group acts we have a lower bound � � d + 1 ≤ dim p V R ( g ) . 2 But � � d + 1 dim p V R ( g ) ≤ dim p V ( g ) ≤ corank ( dg | p ) = . 2 Frohmader, Heaton Epsilon local rigidity

  15.   1 0 0 √ 3 − 1  0  2 2   √ 3 − 1 0 p = −   2 2 √  3 − 1  3 − 2 2 √ 3 − 1 3 2 2 0 1 3 Frohmader, Heaton Epsilon local rigidity

  16. Flexible? Frohmader, Heaton Epsilon local rigidity

  17. Flexible? Frohmader, Heaton Epsilon local rigidity

  18. Flexible? Frohmader, Heaton Epsilon local rigidity

  19. ...and now for something completely different. Frohmader, Heaton Epsilon local rigidity

  20. We know the roots of q ( x ) = x 3 − 1 . x 3 − 7 x 2 + 17 x − 15 x 3 − 5 x 2 − 7 x + 51 ( x − 3)( x − 2 − i )( x − 2 + i ) ( x + 3)( x − 4 + i )( x − 4 − i ) Frohmader, Heaton Epsilon local rigidity

  21.     x d 1 1 − 1 f 1 ( x )     x d 2 f 2 ( x ) 2 − 1     h ( z, t ) = (1 − t )  + γt  ,     . . . .   . . x d N f N ( x ) N − 1 h ( x, t ) = (1 − t ) f + γtq h ( x ( t ) , t ) = 0 Frohmader, Heaton Epsilon local rigidity

  22. h ( x, t ) = (1 − t ) f + γtq h ( x ( t ) , t ) = 0 ∂h dx dt + ∂h ∂t = 0 . ∂x Frohmader, Heaton Epsilon local rigidity

  23. Say that f : C 7 → C 4 . Its irreducible components X can have possible dimensions dim X ∈ { 3 , 4 , 5 , 6 } . To find 4 -dimensional components, create a square system of equations C 7 → C 7 :       f 1 1 0 0 c 11     f 2         0 1 0 c 21     f 3 0   0 0 1 c 31     f 4 0       � �     x 1 0     Af         = x 2 = 0       Lx L 11 L 12 · · · L 17       x 3 0         L 21 L 22 · · · L 27         x 4 0       L 31 L 32 · · · L 37     x 5 0     L 41 L 42 · · · L 47     x 6 x 7 Frohmader, Heaton Epsilon local rigidity

  24. The numerical irreducible decomposition uses witness sets and the following Theorem (Bertini’s Theorem, Theorem 9.3 of [BSHW13]) Given a polynomial system f : C N → C n , there is a Zariski-open, dense set U ⊂ C k × n of matrices A such that V ( Af ) \ V ( f ) is either empty or consists of exactly C f ∈ Z > 0 irreducible components, each smooth (and hence disjoint) and of dimension N − k . The number C f of these extraneous components is independent of A . Frohmader, Heaton Epsilon local rigidity

  25. But now back to epsilon local rigidity... Frohmader, Heaton Epsilon local rigidity

  26. Using a moving frame [Olv], we can change coordinates in a useful way, creating zeros.     1 0 0 0 . 0 0 . 0 0 . 0 √ − 1 3 0   2 2 1 . 7320508075688772 0 . 0 0 . 0     √ − 1 3 0 0 . 8660254037844388 − 1 . 5 0 . 0 −  �→  .    2 2 √ 1 . 3660254037844386 − 1 . 3660254037844386 3 . 0  3 − 1 3 − 2 2 − 0 . 1339745962155613 − 0 . 5 3 . 0 √ 3 − 1 3 1 . 3660254037844388 0 . 3660254037844386 3 . 0 2 2 0 1 3 Frohmader, Heaton Epsilon local rigidity

  27. Real parameter homotopy Start with equations g ( x ) = 0 but then adjoin one additional equation: ℓ v := v T x − v T p = 0 . Here, we can choose v ∈ R N randomly, or we could choose v from some infinitesimal flex. Then perturb this equation to ℓ v,ǫ := v T x − v T p − ǫ = 0 . for some small real 0 < ǫ ∈ R . In the computer, we use a real parameter homotopy (without γ ) as in � � � � g g h ( x, t ) = (1 − t ) + t . ℓ v,ǫ ℓ v Frohmader, Heaton Epsilon local rigidity

  28. Frohmader, Heaton Epsilon local rigidity

  29. Flexible? Frohmader, Heaton Epsilon local rigidity

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend