entry application using emg signals
play

entry Application Using EMG Signals Qiang Yang, Yongpan Zou * , Meng - PowerPoint PPT Presentation

ArmIn: Explore the Feasibility of Designing a Text- entry Application Using EMG Signals Qiang Yang, Yongpan Zou * , Meng Zhao, Jiawei Lin, Kaishun Wu Shenzhen University 2020/2/8 Part 1 Motivation Part 2 System Overview Outline Part 3


  1. ArmIn: Explore the Feasibility of Designing a Text- entry Application Using EMG Signals Qiang Yang, Yongpan Zou * , Meng Zhao, Jiawei Lin, Kaishun Wu Shenzhen University 2020/2/8

  2. Part 1 Motivation Part 2 System Overview Outline Part 3 Challenges & solutions Part 4 Evaluation Part 5 Conclusion

  3. Motivation 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s 4 E va l u a t i o n 5 C o n c l u s i o n Traditional keyboard or touch screen is too small on wearable devices

  4. Extended keyboard 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s 4 E va l u a t i o n Infrared ray Bluetooth Flexible material 5 C o n c l u s i o n Large / Expensive !

  5. ArmIn: EMG-based virtual keyboard 1 Motivation Low-cost 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d Small scale S o l u t i o n s 4 E va l u a t i o n Commercial hardware 5 C o n c l u s i o n Bind on your arm and input on the virtual keyboard!

  6. EMG Signal collection 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s 4 E va l u a t i o n 5 C o n c l u s i o n Stick electrodes on your forearm

  7. System workflow 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s 4 E va l u a t i o n 5 C o n c l u s i o n

  8. System workflow 4. How to enhance the text-entry performance? 2. How to remove the effect of channel asynchrony? 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s 4 E va l u a t i o n 5 C o n c l u s i o n 1. How to eliminate noise inference? 3. How to choose an effective model to recognize keystrokes?

  9. Challenges 1 Motivation 1. How to eliminate noise pollution? 2 S y s t e m O v e r v i e w 2. How to remove the effect of channel asynchrony? 3 C h a l l e n g e s a n d S o l u t i o n s 3. How to choose an effective recognition model? 4 E va l u a t i o n 5 C o n c l u s i o n 4. How to enhance the text-entry performance?

  10. 1. How to eliminate noise pollution? 1 Motivation 2 S y s t e m O v e r v i e w Baseline wandering (BW) 3 C h a l l e n g e s a n d S o l u t i o n s Power line interference (PLI) 4 E va l u a t i o n Gaussian white noise (WGN) 5 C o n c l u s i o n

  11. 1. How to eliminate noise pollution? Power line interference (PLI) Produced by alternating current(AC) at 50Hz, 150Hz,… 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s 4 E va l u a t i o n Elliptic filter-based 3-order notch filter <15Hz 5 C o n c l u s i o n Baseline wandering (BW) Gaussian white noise (WGN) Bandpass Butterworth filter Soft threshold wavelet-based denoising

  12. 2. How to remove the effect of channel asynchrony? 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s 4 E va l u a t i o n Electrodes are attached at different positions of muscles, EMG 5 C o n c l u s i o n signals cannot be captured simultaneously in multi channels.

  13. 2. How to remove the effect of channel asynchrony? Observation SE can be used as a weight to balance 1 Motivation EMG signal and noise. 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d Because of the randomness of noises, S o l u t i o n s SE can be regarded as an indicator. 4 E va l u a t i o n Real EMG signal owns more power 5 C o n c l u s i o n so that can be described by RMS.

  14. 2. How to remove the effect of channels asynchrony? Definition: C(w) 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s 4 E va l u a t i o n 5 C o n c l u s i o n Where w i denotes the i th window, i means the SE of i th window in j th channel, SE j RMS j is defined as the RMS of i th window in j th channel.

  15. 2. How to remove the effect of channels asynchrony? C(w) 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s 4 E va l u a t i o n Revision: 5 C o n c l u s i o n 1. Short pause or shift (1-0-1) → (1-1-1) Use threshold T to encode C(w), 2. Short time < 5 windows (0.3s) → 0 then endpoints can be detected.

  16. 2. How to remove the effect of channel asynchrony? 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s 4 E va l u a t i o n 5 C o n c l u s i o n Endpoints can be detected even though that EMG signals of each channel are asynchronous.

  17. 4. How to choose an effective recognition model? 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s 4 E va l u a t i o n 5 C o n c l u s i o n Feature selection (Wrapper method) 10-fold cross validation

  18. 4. How to choose an effective recognition model? SVM / KNN / random forests (RF) / Discriminant Analysis (DA)? 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s Penalty coefficient C 4 E va l u a t i o n Kernel function coefficient γ 5 C o n c l u s i o n SVM

  19. 4. How to choose an effective recognition model? SVM / KNN / random forests (RF) / Discriminant Analysis (DA)? 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d Achieve a balance between S o l u t i o n s training time and performance 4 E va l u a t i o n 5 C o n c l u s i o n 5 KNN

  20. 4. How to choose an effective recognition model? SVM / KNN / random forests (RF) / Discriminant Analysis (DA)? 1 Motivation RF 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d Trees: Number of trees S o l u t i o n s Dim: number of branches in each node 4 E va l u a t i o n Discriminant Analysis(DA) Performance 5 C o n c l u s i o n ☆ Liner Discriminant Analysis(LDA) 84.43% DA Diaglinear Discriminant Analysis(DDA) 82.57% Quadratic Discriminant Analysis(QDA) 83.25%

  21. 4. How to enhance the text-entry performance? Intended word : 𝑋 = 𝑥 1 𝑥 2 … 𝑥 𝑜 … Recognized letters : T = 𝑢 1 𝑢 2 … 𝑢 𝑜 … 1 Motivation ሻ max 𝑄 𝑋 𝐽 ≈ max 𝑄(𝐽|𝑋ሻ × 𝑄(𝑋 2 S y s t e m O v e r v i e w 𝑊 𝑊 𝑜 𝑄 𝑚 𝑗 𝑥 𝑗 = ς 𝑗 𝑜 𝐷𝑁(𝑥 𝑗 , 𝑚 𝑗 ሻ 𝑄 𝐽 𝑋 = ς 𝑗 3 C h a l l e n g e s a n d S o l u t i o n s ሻ 𝑛𝑏𝑦 𝑄 𝑋 𝐽 ≈ 𝑛𝑏𝑦 𝑄(𝐽|𝑋ሻ × 𝑄(𝑋 𝑊 𝑊 𝑜 𝑄 𝑚 𝑗 𝑥 𝑗 × 𝑄(𝑋ሻ ς 𝑗 ≈ 𝑛𝑏𝑦 4 E va l u a t i o n 𝑊 𝑜 𝐷𝑁(𝑥 𝑗 , 𝑚 𝑗 ሻ × 𝑄(𝑋ሻ ς 𝑗 ≈ 𝑛𝑏𝑦 𝑄 𝑋 𝑑𝑏𝑜 𝑐𝑓 𝑝𝑐𝑢𝑏𝑗𝑜𝑓𝑒 𝑔𝑠𝑝𝑛 𝑑𝑝𝑠𝑞𝑣𝑡 𝑊 5 C o n c l u s i o n 𝐷𝑁(𝑥 𝑗 , 𝑚 𝑗 ሻ is the confusion matrix of letters recognition. Bayesian-based correction method

  22. Experiment setup 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s Experiments on printed and ArmIn prototype physical keyboard 4 E va l u a t i o n 5 C o n c l u s i o n For left hand key area, 8 participants X 16 letters X 130 repetitions X 2 keyboards 8 participants X 15 words X 30 times

  23. Evaluation 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s SVM achieves the best average accuracy ( 89.5% ) over all participants with the lowest variance 4 E va l u a t i o n (0.17%). 5 C o n c l u s i o n Although SVM has a higher training overhead threshold, it still achieves the highest accuracy when the training sample number reaches 40. We use it as optimal model. Among 8 participants, the best performance of them is 95.1% and the worst is 82.9%

  24. Evaluation 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s 4 E va l u a t i o n For printed and physical keyboards, the average recognition accuracy can achieve about 89.5% and 87.5% , respectively 5 C o n c l u s i o n The lowest accuracy among all letters is 85.6% , which means that ArmIn holds a stable recognition accuracy among different letters.

  25. Evaluation 1 Motivation 2 S y s t e m O v e r v i e w 3 C h a l l e n g e s a n d S o l u t i o n s 4 E va l u a t i o n With one candidate word, the accuracy rises to 43.6%. When two candidate words are displayed, the system can achieve 92.5% accuracy. 5 C o n c l u s i o n The performance can be enhanced further by considering more candidate words, e.g., 93% accuracy for three candidate words.

  26. Conclusion We design and implement ArmIn with commercial EMG electrodes which can recognize fine-grained keystrokes. 1 Motivation 2 S y s t e m O v e r v i e w We conduct experiment to evaluate its performance, and results show ArmIn can recognize keystrokes and word with 3 C h a l l e n g e s a n d S o l u t i o n s accuracy of 89.5% and 92.5% (providing two candidates), respectively. 4 E va l u a t i o n 5 C o n c l u s i o n We prove the feasibility of designing a text-entry application using EMG signals, which opens up a new vision of HCI applications using EMG techniques.

  27. THANK YOU Questions? Qiang Yang Shenzhen University yangqiang2016@email.szu.edu.cn

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend