enhancing ieee 802 11 mac in congested environments
play

Enhancing IEEE 802.11 MAC in congested environments Imad Aad, Qiang - PowerPoint PPT Presentation

Enhancing IEEE 802.11 MAC in congested environments Imad Aad, Qiang Ni, Chadi Barakat, Thierry Turletti ASWN, Boston-MA, USA August 9 th , 2004 Enh. 802.11 p.1 Outline IEEE 802.11 Very brief description Mathematical model description


  1. Enhancing IEEE 802.11 MAC in congested environments Imad Aad, Qiang Ni, Chadi Barakat, Thierry Turletti ASWN, Boston-MA, USA August 9 th , 2004 Enh. 802.11 – p.1

  2. Outline IEEE 802.11 Very brief description Mathematical model description Enhacement Related work Slow decrease (SD) Performance Evaluation Enh. 802.11 – p.2

  3. MAC sub-layer Time DIFS Data Source (Tx) CW SIFS ACK Destination (Tx) DIFS Contention Window Other NAV Defer access = NAV+DIFS Backoff Enh. 802.11 – p.3

  4. MAC sub-layer backoff = rand () × CW Collision → equal backoffs → too many nodes → Should increase CW !! at the i th retransmission: CW ( i ) = CW min × 2 i at a successful transmission: CW = CW min Enh. 802.11 – p.3

  5. MAC Throughput Model [Bianchi] S = E [ payload − information − transmitted − in − a − slot − time ] E [ length − of − a − slot − time ] Enh. 802.11 – p.4

  6. MAC Throughput Model [Bianchi] S = E [ payload − information − transmitted − in − a − slot − time ] E [ length − of − a − slot − time ] P s P tr E [ P ] S = (1 − P tr ) σ + P tr P s T s + P tr (1 − P s ) T c Enh. 802.11 – p.4

  7. MAC Throughput Model [Bianchi] S = E [ payload − information − transmitted − in − a − slot − time ] E [ length − of − a − slot − time ] P s P tr E [ P ] S = (1 − P tr ) σ + P tr P s T s + P tr (1 − P s ) T c Enh. 802.11 – p.4

  8. MAC Throughput Model [Bianchi] S = E [ payload − information − transmitted − in − a − slot − time ] E [ length − of − a − slot − time ] P s P tr E [ P ] S = (1 − P tr ) σ + P tr P s T s + P tr (1 − P s ) T c P s = nτ (1 − τ ) n − 1 = nτ (1 − τ ) n − 1 1 − (1 − τ ) n P tr P tr = 1 − (1 − τ ) n Enh. 802.11 – p.4

  9. MAC Throughput Model [Bianchi] To find τ , 2 nonlinear equations to solve, 1: p = 1 − (1 − τ ) n − 1 Enh. 802.11 – p.4

  10. MAC Throughput Model [Bianchi] To find τ , 2 nonlinear equations to solve, 2: (1−p)/W 0 1 1 1 1 0,0 0,1 0,2 0,W −2 0,W −1 0 0 i−1,0 p/W i 1 1 1 1 i,0 i,1 i,2 i,W −2 i,W −1 i i p/W i+1 p/W m 1 1 1 1 m,0 m,1 m,2 m,W −2 m,W −1 m m p/W m Enh. 802.11 – p.4

  11. MAC Throughput Model [Bianchi] To find τ , 2 nonlinear equations to solve: p = 1 − (1 − τ ) n − 1 2(1 − 2 p ) τ = (1 − 2 p )( W +1)+ pW (1 − (2 p ) m ) Enh. 802.11 – p.4

  12. MAC Throughput Model [Bianchi] To find τ , 2 nonlinear equations to solve: p = 1 − (1 − τ ) n − 1 2(1 − 2 p ) τ = (1 − 2 p )( W +1)+ pW (1 − (2 p ) m ) → Matlab → very close to simulations Enh. 802.11 – p.4

  13. MAC Throughput Model [Bianchi] 850 802.11, simul 802.11, model SD, δ = 0.5, model SD, δ = 0.5, simul SD, δ = 0.25, model SD, δ = 0.25, simul 800 Total throughput (KBytes/s) 750 700 650 600 5 10 15 20 25 30 35 40 45 50 Number of contending flows, n Enh. 802.11 – p.4

  14. Outline Enh. 802.11 – p.5

  15. CW slow decrease After each collision, CSMA/CA increases CW Upon a successful transmission, reset CW BUT! congestion did not “reset”! Enh. 802.11 – p.6

  16. CW slow decrease To reset or not to reset, that is the question! Enh. 802.11 – p.7

  17. Related work In 1994, Bharghavan et al. proposed MACAW: MILD: Multiplicative Increase ( CW = CW × 1 . 5 ) Linear Decrease ( CW = CW − 1 ) Enh. 802.11 – p.8

  18. Related work In 1994, Bharghavan et al. proposed MACAW: Enh. 802.11 – p.9

  19. Related work In 1994, Bharghavan et al. proposed MACAW: Enh. 802.11 – p.10

  20. Our approach We propose a slow CW decrease mechanism (SD), e.g. CW = 0 . 9 × CW Enh. 802.11 – p.11

  21. Simulation scenario Simulation time (sec): 42 0 50 100 150 200 Enh. 802.11 – p.12

  22. Simulation scenario Simulation time (sec): 44 0 50 100 150 200 Enh. 802.11 – p.12

  23. Simulation scenario Simulation time (sec): 50 0 50 100 150 200 Enh. 802.11 – p.12

  24. Simulation scenario Simulation time (sec): 100 0 50 100 150 200 Enh. 802.11 – p.12

  25. Simulation scenario Simulation time (sec): 140 0 50 100 150 200 Enh. 802.11 – p.12

  26. Simulation scenario Simulation time (sec): 150 0 50 100 150 200 Enh. 802.11 – p.12

  27. Throughput vs. n 250 SD, basic, qlen = 2 802.11, basic, qlen = 2 No decrease, basic, qlen = 2 200 Throughput (KBytes/s) 150 100 50 0 0 50 100 150 200 250 300 Time (s) Enh. 802.11 – p.13

  28. Settling time vs. δ 1.2 Eq. (8), pkt-size = 1050 Simul, λ =1, pkt-size = 1050 1 0.8 Settling time, T l , (s) 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 Multiplicative factor, δ Enh. 802.11 – p.14

  29. Delays vs. n 0.9 "delays_09_comm_noRTS_qlen2.dat" "delays_noenh_comm_noRTS_qlen2.dat" 0.8 0.7 0.6 Packet delay (s) 0.5 0.4 0.3 0.2 0.1 0 0 50 100 150 200 250 300 Time (s) Enh. 802.11 – p.15

  30. Throughput gain vs. δ 1.4 Basic, λ = 1, pkt-size = 1050 RTS/CTS, λ = 1, pkt-size = 1050 Basic, λ = 0.1, pkt-size = 105 1.35 1.3 1.25 Throughput gain, G 1.2 1.15 1.1 1.05 1 0.95 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Multiplicative factor, δ Enh. 802.11 – p.16

  31. 802.11 throughput model (1−p)/W 0 1 1 1 1 0,0 0,1 0,2 0,W −2 0,W −1 0 0 i−1,0 p/W i 1 1 1 1 i,0 i,1 i,2 i,W −2 i,W −1 i i p/W i+1 p/W m 1 1 1 1 m,0 m,1 m,2 m,W −2 m,W −1 m m p/W m Enh. 802.11 – p.17

  32. SD throughput model (1−p)/W 0 1 1 1 1 0,0 0,1 0,2 0,W −2 0,W −1 0 0 i−1,0 p/W i 1 1 1 1 i,0 i,1 i,2 i,W −2 i,W −1 i i p/W i+1 p/W m 1 1 1 1 m,0 m,1 m,2 m,W −2 m,W −1 m m p/W m Enh. 802.11 – p.18

  33. Throughput vs n 850 802.11, simul 802.11, model SD, δ = 0.5, model SD, δ = 0.5, simul SD, δ = 0.25, model SD, δ = 0.25, simul 800 Total throughput (KBytes/s) 750 700 650 600 5 10 15 20 25 30 35 40 45 50 Number of contending flows, n Enh. 802.11 – p.19

  34. Throughput Gain vs. CW min 1.3 simul, n=5 model, n=5 simul, n=20 model, n=20 1.25 simul, n=50 model, n=50 1.2 Throughput gain of SD 1.15 1.1 1.05 1 0.95 0 20 40 60 80 100 120 140 CWmin Enh. 802.11 – p.20

  35. 802.11 Fairness, varying CW min 1 0.9 0.8 Average Jain fairness index 0.7 0.6 0.5 0.4 0.3 0.2 10 flows, CWmin = 32 10 flows, CWmin = 63 10 flows, CWmin = 127 0.1 0 500 1000 1500 2000 Window size Enh. 802.11 – p.21

  36. 802.11 Fairness, varying n 1 0.9 0.8 0.7 Average Jain fairness index 0.6 0.5 0.4 0.3 0.2 10 flows 0.1 25 flows 50 flows 80 flows 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Window size Enh. 802.11 – p.22

  37. SD Fairness, varying n 1 0.9 0.8 0.7 Average Jain fairness index 0.6 0.5 0.4 0.3 0.2 SD, 10 flows SD, 15 flows SD, 20 flows 0.1 SD, 40 flows SD, 50 flows SD, 80 flows 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Window size Enh. 802.11 – p.23

  38. Fairness comparison 1 0.9 0.8 0.7 Average Jain fairness index 0.6 0.5 0.4 0.3 0.2 802.11, 10 flows 0.1 SD, 10 flows 802.11, 80 flows SD, 80 flows 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Window size Enh. 802.11 – p.24

  39. Coexisting SD and 802.11 30 10 flows, 802.11, simul 10 flows, SD λ = 0.5, simul 20 flows, 802.11, simul 20 flows, SD λ = 0.5 , simul 10 flows, 802.11, model 25 10 flows, SD λ = 0.5, model 20 flows, 802.11, model 20 flows, SD λ = 0.5, model Throughput/node (KBytes/s) 20 15 10 5 0 0 0.2 0.4 0.6 0.8 1 Proportion of 802.11 nodes Enh. 802.11 – p.25

  40. Energy consumption 11 10 9 8 Energy/Bit (x10e-6 Joules) 7 6 5 4 3 2 802.11, Tx 1 SD, Tx 802.11, Rx SD, Rx 0 0 5 10 15 20 25 30 Number of contending flows Enh. 802.11 – p.26

  41. On the application layer, FTP 300 250 200 FTP duration (s) 150 100 50 802.11 SD 0 0 5 10 15 20 25 30 Number of contending flows Enh. 802.11 – p.27

  42. Noisy channel 1.4 1.3 1.2 1.1 Throughput gain of SD 1 0.9 0.8 0.7 0.6 1 flow 4 flows 15 flows 0.5 25 flows 40 flows 50 flows 0.4 0 0.02 0.04 0.06 0.08 0.1 Packet Error Rate (PER) Enh. 802.11 – p.28

  43. Conclusion Deep analysis of simple Slow Decrease (SD) functions SD outperforms 802.11 in: throughput delay fairness (if congested) battery consumption etc. 802.11 outperforms SD if channel is severely noisy Enh. 802.11 – p.29

  44. The End Thank you! ... questions ? imad.aad@epfl.ch Enh. 802.11 – p.30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend